
1

Scheduling Algorithms

2

Dispatcher vs. Scheduler

q Dispatcher
§ Low-level mechanism
§ Responsibility: context switch

• context_switch() in Linux kernel

q Scheduler
§ High-level policy
§ Responsibility: deciding which process to run

• pick_next_task() in Linux kernel

3

Scheduling performance metrics

q Min waiting time: don’t have process wait long
in ready queue

q Max CPU utilization: keep CPU busy

q Max throughput: complete as many processes
as possible per unit time

q Min response time: respond immediately

q Fairness: give each process (or user) same
percentage of CPU

4

First-Come, First-Served (FCFS)

q Simplest CPU scheduling algorithm
§ First job that requests the CPU gets the CPU
§ Nonpreemptive

q Implementation: FIFO queue

5

Process Arrival Time Burst Time
P1 0 7
P2 0 4
P3 0 1
P4 0 4

q Gantt chart

q Average waiting time: (0 + 7 + 11 + 12)/4 = 7.5

Example of FCFS

P1 P2 P3 P4Schedule:

6

P3

Process Arrival Time Burst Time
P1 0 7
P2 0 4
P3 0 1
P4 0 4

Arrival order: P3 P2 P4 P1

q Average waiting time: (9 + 1 + 0 + 5)/4 = 3.75

Example of FCFS: different arrival order

P1P2 P4

7

FCFS advantages and disadvantages

q Advantages
§ Simple
§ Fair

q Disadvantages
§ waiting time depends on arrival order
§ Convoy effect

• Short process stuck waiting for long process
• Also called head of the line blocking

8

Shortest Job First (SJF)

q Schedule the process with the shortest time

q FCFS if same time

9

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

q Gantt chart

q Average waiting time: (0 + 6 + 3 + 7)/4 = 4

Example of SJF (w/o preemption)

P1 P2 P3 P4

P1 P2P3 P4Schedule:

Arrival:

10

Shortest Remaining Time First (SRTF)

q If new process arrives w/ shorter CPU burst
than the remaining for current process,
schedule new process

q Also known as:
§ SJF with preemption
§ Shortest Time-to-Completion First (STCF)

q Advantage: reduces average waiting time
§ Provably optimal

11

q Gantt chart

q Average waiting time: (9 + 1 + 0 + 2)/4 = 3

Example of SRTF

P1 P2 P3 P4

P1 P2 P3 P4Schedule:

Arrival:

P2 P1

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

12

SJF Advantages and Disadvantages

q Advantages
§ Minimizes average wait time.
§ Provably optimal if no preemption allowed

q Disadvantages
§ Not practical: difficult to predict burst time

• Possible: past predicts future
§ May starve long jobs

13

Round-Robin (RR)

q Process runs for a predetermined time slice,
and then moves to back of queue

q Process gets preempted at the end of time
slice

q How long should the time slice be?

14

q Average waiting time: (8 + 8 + 5 + 7)/4 = 7
q Average response time: (0 + 1 + 5 + 5)/4 = 2.75
q # of context switches: 7

Example of RR:
time slice = 3

P1 P2 P3 P4Arrival:

Queue: P1
P2
P1

P1
P2

P1
P3

P2
P1
P3
P4

P2 P1
P3
P4
P2 P1

P3
P4
P2 P1

P4
P2 P1

P4

P2 P1
P4

P4

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

15

q Average waiting time: (8 + 6 + 1 + 7)/4 = 5.5
q Average response time: (0 + 0 + 1 + 2)/4 = 0.75
q # of context switches: 14

Smaller time
slice = 1

P1 P2 P3 P4Arrival:

Queue: P1
P1
P2

P1
P3
P2

P1
P4

P2 P1
P4

P4
P2
P1P1

P1
P3

P4
P2

P1
P4
P2 P1

P4
P2 P1

P4

P2P1
P4
P2 P1

P4
P2 P1

P4 P1
P4

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

16

q Average waiting time: (0 + 5 + 7 + 7)/4 = 4.75
q Average response time: same
q # of context switches: 3 (minimum)

Larger time
slice = 10

P1 P2 P3 P4Arrival:

Queue: P1
P2
P1 P1

P3
P2 P3

P4

P2 P3
P4

P4P1

P3
P2

P4

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

17

RR advantages and disadvantages

q Advantages
§ Low response time, good interactivity
§ Fair allocation of CPU across processes
§ Low average waiting time when job lengths vary widely

q Disadvantages
§ Poor average waiting time when jobs have similar lengths

• Average waiting time is even worse than FCFS!
§ Performance depends on length of time slice

• Too high è degenerate to FCFS
• Too low è too many context switches, costly

18

Priorities
q Priority is associated with each process

§ Run highest priority process that is ready
§ Round-robin among processes of equal priority

q Priority can be statically assigned
§ Some always have higher priority than others

q Priority can be dynamically changed by OS
§ Aging: increase the priority of processes that wait in the

ready queue for a long time

for (pp = proc; pp < proc+NPROC; pp++) {
if (pp->prio != MAX)

pp->prio++;
if (pp->prio > curproc->prio)

reschedule();
}

Code from

6th Edition UNIX

circa 1976

19

Priority inversion
q High priority process depends on low priority

process (e.g. to release a lock)
§ Another process with in-between priority arrives?

q Solution: priority inheritance
§ Inherit highest priority of waiting process
§ Must be able to chain multiple inheritances
§ Must ensure that priority reverts to original value

q Google for “mars pathfinder priority inversion”

P1 (low): lock(my_lock) (gets my_lock)

P2(high): lock(my_lock)

P3(medium): while (…) {}

P2 waits, P3 runs, P1 waits

P2’s effective priority less than P3!

20

Multi-Level Feedback Queue (MLFQ)

q Processes move between queues
§ Queues have different priority levels
§ Priority of process changes based on

observed behavior
q MLFQ scheduler parameters:

§ number of queues
§ scheduling algorithms for each queue
§ when to upgrade a process
§ when to demote a process
§ which queue a process will start in

MLFQ example from OSTEP book

q Rule 1: If Priority(A) > Priority(B), A runs (B
doesn’t)

q Rule 2: If Priority(A) = Priority(B), A & B run in RR
using the time slice of the queue

q Rule 3: When a job enters the system, it starts in
the topmost queue (of the highest priority)

q Rule 4: Once a job uses up its time allotment at a
given level (regardless of how many times it has
given up the CPU), its priority is reduced (i.e., it
moves down one queue)

q Rule 5: After some time period S, move all the
jobs in the system to the topmost queue

21

How to allocate processes to CPUs?

CPU0 CPU1 CPU2 CPU3

processes

22

Symmetric multiprocessing (SMP)

q Multiple identical CPUs
q Same access time to main memory
q Private cache

CPU0 CPU1 CPU2 CPU3

Shared Memory

$ $ $ $

23

Global queue of processes

q One ready queue shared across all CPUs

q Advantages
§ Good CPU utilization
§ Fair to all processes

q Disadvantages
§ Not scalable (contention for global queue lock)
§ Poor cache locality

CPU0 CPU1 CPU2 CPU3

24

Per-CPU queue of processes

q Static partition of processes to CPUs

q Advantages
§ Easy to implement
§ Scalable (no contention on ready queue)
§ Better cache locality

q Disadvantages
§ Load-imbalance (some CPUs have more processes)

• Unfair to processes and lower CPU utilization

CPU0 CPU1 CPU2 CPU3

25

Modern OSes take hybrid approaches

q Use both global and per-CPU queues
q Migrate processes across per-CPU queues

q Processor Affinity
§ Add process to a CPU’s queue if recently run on the CPU

• Cache state may still present

CPU0 CPU1 CPU2 CPU3

26

Heterogeneous CPU topology
q Latest trends in CPUs

§ Apple silicon
§ Intel Alder Lake

q Technically AMP, but closer to SMP
§ Cores have same ISA but different speeds
§ Mix of performance (P) and efficient (E) cores

q Ex: Apple M1 Pro
§ 8 P-cores (3228MHz) & 2 E-cores (2064MHz)
§ L1 cache: 192/128KB on P-core & 128/64KB on E-core
§ L2 cache: two 12M on P-core & one 4M on E-core

q Support being added to recent OS
§ Quality of Service (QoS) classes in macOS
§ Energy Aware Scheduling in Linux

27

