
Scheduling in Linux

1

Real-time scheduling

q Hard real-time
§ complete critical task within guaranteed time period

q Soft real-time
§ critical processes have priority over others

q Linux supports soft real-time

2

Linux: multi-level queue with priorities
q Soft real-time scheduling policies

§ SCHED_FIFO (FCFS)
§ SCHED_RR (round robin)
§ Priority over normal tasks
§ 100 static priority levels (1..99)

q Normal scheduling policies
§ SCHED_NORMAL: standard

• SCHED_OTHER in POSIX
§ SCHED_BATCH: CPU bound
§ SCHED_IDLE: lower priority
§ Static priority is 0

• 40 dynamic priority
• “Nice” values

q sched_setscheduler(), nice()
q See “man 7 sched” for detailed overview

Nice 0

Real Time 1

Real Time 99

Real Time 2

Real Time 3

…

Nice 19

Nice -20

…
…

3

Linux scheduler history
q O(N) scheduler up to 2.4

§ Simple: global run queue
§ Poor performance on multiprocessor and large N

q O(1) scheduler in 2.5 & 2.6
§ Good performance: per-CPU run queue
§ Complex and error prone logic to boost interactivity
§ No fairness guarantee

q Completely Fair Scheduler (CFS) in 2.6 and later
§ Currently default scheduler for SCHED_NORMAL
§ Processes get fair share of CPU
§ Naturally boosts interactivity

q Alternative schedulers: BFS, MuQSS, PDS, BMQ, TT, etc.
§ https://wiki.archlinux.org/title/improving_performance#Alternative_CPU_

schedulers

4

https://wiki.archlinux.org/title/improving_performance
https://wiki.archlinux.org/title/improving_performance

Ideal fair scheduling
q Infinitesimally small time slice
q n processes: each runs uniformly at 1/nth rate

q Various approximations of the ideal
§ Lottery scheduling
§ Stride scheduling
§ Linux CFS

•1 Process

•3 Processes 1/3rd progress

5

q Approximate fair scheduling
§ Run each thread once per schedule latency (SL)
§ Weighted time slice: SL * Wi / (Sum of all Wi)

q Too many threads?
§ Lower bound on smallest time slice
§ Schedule latency = lower bound * (# threads)

Completely Fair Scheduler (CFS)

6

Picking the next process
q Pick proc with minimum virtual runtime so far

§ Virtual runtime: task->vruntime += executed time / Wi
q Example

§ P1: 1 ms burst per 10 ms (schedule latency)
§ P2 and P3 are CPU-bound
§ All processes have the same weight (1)

Ready P1
P2
P3

Slice 3ms 5ms

P2
P3 P2

P3 P1
P2
P3

1
5
5

5
0

3ms

7

Finding proc with minimum runtime fast
q Red-black tree

§ Balanced binary search tree
§ Ordered by vruntime as key
§ O(lgN) insertion, deletion, update, O(1): find min

cfs_rq->min_vruntime

300

150

100
400

41030

q Tasks move from left of tree to the right
q min_vruntime caches smallest value
q Update vruntime and min_vruntime

§ When task is added or removed
§ On every timer tick

8

Notable implementation details

q Integer table of nice-level to weight
§ static const int prio_to_weight[40] (kernel/sched/sched.h)
§ Nice level changes by 1 è 10% weight

q cgroup
§ Fairness between users & apps, rather than threads
§ cgroup’s vruntime == sum of its threads’ vruntimes

q Upper bound on vruntime difference
§ New thread gets max vruntime in the RQ
§ When thread wakes up, its vruntime >= min_vruntime

q Load balancing based on many factors

9

