
Log-Structured File System (LFS)

COMS W4118

1

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

Log-Structured File System

• Motivation
– Faster CPUs: I/O becomes more and more of a bottleneck
– More memory: file cache is effective for reads
– Implication: writes compose most of disk traffic

• Problems with previous FS
– Perform many small writes

• Good performance on large, sequential writes, but many writes
are still small, random

– Synchronous operations to avoid data loss
• i.e., journaling

– Depends upon knowledge of disk geometry
• i.e., cylinder groups

2

LFS Big Ideas

• Insight: treat disk like a tape-drive
– Disk performs best for sequential access
– Essentially, extreme journaling

• Write data to disk in a sequential log
– Delay all write operations

• Prefer writing one huge “segment” over a bunch of small
writes

– Write metadata and data for all files intermixed in one
operation
• How to find data/metadata if not centralized?

– Do not overwrite old data on disk
• When do you clean up old data?

3

LFS Data Structures

• Same basic structures as Unix
– Directories, inodes, indirect blocks, data blocks
– Reading data block implies finding the file’s inode

• Unix: inodes kept in array
• LFS: inodes move around on disk

• Solution: inode map indicates where each inode
is stored
– Small enough to keep in memory
– inode map written to log with everything else
– Periodically written to known checkpoint location on

disk for crash recovery

4

Efficient Reads: Indexing the Log

File data File inode Dir data Dir inode Inode map
(LFS only)

UNIX FFS (or Ext2)

Inode area

LFS

New data writes

Fixed checkpoint
(LFS only)

5

Writes: Copy on Write

File data File inode Dir data Dir inode Inode map
(LFS only)

Update second file data block

New data writes

Fixed checkpoint
(LFS only)

Original

New data writes

Free

6

Disk Cleaning
• When disk runs low on free space

– Run a disk cleaning process
– Compacts live information to contiguous blocks of disk

File data File inode Dir data Dir inode Inode map
(LFS only)

Fixed checkpoint
(LFS only)

Free

In reality, too expensive to clean contiguously.
FS is split into moderately large segments (e.g., 1MB or more).

7

Disk Cleaning
• When disk runs low on free space
– Run a disk cleaning process
– Compacts live information to contiguous blocks of disk

• Problem: long-lived data repeatedly copied over time
– Solution: Group older files into same segment
– Old segments won’t have many changes. Skip.

• LFS: neat idea, influential
– Paper on LFS one of the most widely cited OS paper
– Many real file systems based on the idea

• Relevant for SSD-conscious designs

8

