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A Refresher

➢ Think user/kernel mode
➢ CPU can only execute a subset of instructions in user mode, must elevate to 

kernel mode (e.g. via a system call) to perform privileged operations
➢ User programs are compiled to operate within the bounds of user mode; 

executing a privileged instruction will get trapped and likely killed by the OS



How do we run a program 
which expects to be able to 
perform privileged 
operations? 🤔
e.g. another OS



Demo: Running a 
program with 
privileged 
instructions



Computers are turing-complete, why 
not write a program which does 
everything a CPU does to “emulate” a 
machine that runs our privileged 
executable code?

struct virtual_cpu {

int mode;

int interrupts_enabled;

...

};

struct virtual_cpu vcpu;

...

while (fread(&instruction, sizeof(instruction), os_executable)) {

if (instruction == MASK_INTERRUPTS)

vcpu.interrupts_enabled = 0;

if (instruction == UNMASK_INTERRUPTS)

vcpu.interrupts_enabled = 1;

if (instruction == SOFTWARE_INTERRUPT_INSTRUCTION)

if (vcpu.mode == 1)  // virtual CPU is in user mode

vcpu.mode = 0; // we will enter kernel mode

...

}

CPU Emulation



CPU Emulation

👍
➢ Emulator is just a normal user 

program, basically an interpreter 
for machine code

➢ Regardless of our host machine, 
we can run a guest compiled for 
any architecture, privilege, etc.

👎
➢ Really, really slow compared to 

executing instructions natively 
on the CPU

➢ We’re emulating every single 
instruction, not just the 
privileged ones; far from optimal 
when the guest architecture is 
the same as the host machine



Trap-and-Emulate

The guest operating system largely 
executes in user-mode, but unlike 
emulation, instructions are executed 
directly on the CPU; in the event we run into 
any privileged instructions, we trap to 
kernel-mode for emulating the operation 
and maintaining CPU state for the guest’s 
“virtual” CPU.

load reg0, 5    ✅

load reg1, 6    ✅

add reg0, reg1  ✅

mask_interrupts ❌

next_instruction ❓

if (fault_instruction == MASK_INTERRUPTS)

vcpu.interrupts_enabled = 0;

...

return_to_vcpu();

jump to trap handler

user-mode 
(guest OS)

kernel-mode
(host OS / VMM / hypervisor)

jump to right after 
the emulated 
instruction



Trap-and-Emulate

👍
➢ Much faster than full emulation, 

we only emulate the “sensitive” 
instructions that could interact 
with host OS state

➢ Non-privileged instructions are 
executed natively on the CPU, 
reducing overhead greatly

👎
➢ Only possible if the CPU actually 

traps on every “sensitive” 
instruction

➢ Major architectures, such as x86 
and ARM, do not



To Trap or Not to Trap:
x86 Example

PUSHF           ✅

POP EAX         ✅
if (fault_instruction == PUSH_FLAGS) {

int val = vcpu.interrupts_enabled;

do_push_stack(vcpu, val);

}

...

return_to_vcpu();

oopsie, we 
never trap!

user-mode 
(guest OS)

kernel-mode
(host OS / VMM / hypervisor)

x86 ISA includes many “sensitive” instructions which 
can be executed at the user privilege level. One such 
instruction is PUSHF, which reads some CPU state flags 
and pushes them onto the stack. These flags include IF, 
the interrupt enable flag.

guest execution 
continues having 
read host CPU state

// guest disabled interrupts earlier
long flags;
spin_lock_irqsave(lk, flags);    // does PUSHF
...
spin_lock_irqrestore(lk, flags); // enables interrupts??



Virtualizing the Non-Virtualizable (before it was cool)

1974

Popek and Goldberg

formally define: “sensitive” 
instructions must all trap for 
an architecture to be 
“virtualizable”1

  

1998

Intel Corporation

engineers are convinced that 
their processors cannot be 
virtualized in any practical 
sense2

  

???

  

1999

VMware

releases the first x86 
virtualization product, a 
desktop hypervisor software3

  

1. https://en.wikipedia.org/wiki/Popek_and_Goldberg_virtualization_requirements
2. https://personal.utdallas.edu/~sridhar/ios/ref/virt_book.pdf
3. https://en.wikipedia.org/wiki/VMware_Workstation

https://en.wikipedia.org/wiki/Popek_and_Goldberg_virtualization_requirements
https://personal.utdallas.edu/~sridhar/ios/ref/virt_book.pdf
https://en.wikipedia.org/wiki/VMware_Workstation


Virtualizing the Non-Virtualizable (before it was cool)

VMware had to get creative to enable 
virtualization on x86; they employed binary 
translation, essentially patching over the actual 
guest binary to enable emulation of any 
sensitive instructions.

MOV EAX, 5      ✅

MOV EBX, 6      ✅

ADD EAX, EBX    ✅

PUSHF           ✅

no trap 😔

MOV EAX, 5      ✅

MOV EBX, 6      ✅

ADD EAX, EBX    ✅

...

INT X           ❌

we trap 😃



Hardware Support

If there’s no way under the current ISA design to 
trap sensitive instructions to our higher privilege 
level, and we need to maintain backwards 
compatibility with all the existing executable 
code out there, let’s just slap on an additional 
layer of privilege!

❏ Intel VT-x: a new CPU mode that is 
completely orthogonal to the existing 
privilege levels: root vs. non-root mode

❏ ARM Virtualization Extensions: an 
additional level of privilege, EL2,  which 
sits on top of the existing privilege levels



Hardware Support

➢ Orthogonal non-root mode 
maintains “shadow” state which 
parallels all root mode CPU state

➢ Shadow state is stored in one 
giant “virtual machine control 
structure” (VMCS), and must be 
restored/saved upon entry/exit 
to root mode all at once

➢ Additional EL2 level of privilege 
with its own independent state

➢ Can selectively save/restore CPU 
state when entering from / 
returning to lower privilege, 
allowing the hypervisor more 
fine-tune control



x86 Example Revisited
PUSHF           ✅

POP EAX         ✅
if (fault_instruction == PUSH_FLAGS) {

int val = vcpu.interrupts_enabled;

do_push_stack(vcpu, val);

}

...

return_to_vcpu();

we never trap—
but this is ok!

non-root kernel-mode 
(guest OS)

root kernel-mode
(host OS / VMM / hypervisor)

guest execution 
continues having read 
shadow CPU state ⃠

PUSHF will read the 
shadow CPU state 
flags which were 
restored from 
VMCS upon 
VMRESUME.

// guest disabled interrupts earlier
long flags;
spin_lock_irqsave(lk, flags);    // does PUSHF
...
spin_lock_irqrestore(lk, flags); // intrs stay disabled!



The Problem with Paging

Guest OS wants to set up its page 
tables to map virtual addresses to 
physical memory, but the VMM 
obviously can’t allow it to have free 
reign over actual memory. Instead, 
the illusion must be created by 
trapping any guest attempts at page 
table configuration and maintaining 
“shadow page tables”.



Second Level Address Translation

Instead of the VMM trapping everything and 
doing the heavy-lifting in software, let’s let 
the guest manage its own page tables and 
have the MMU handle an additional level of 
translation—from guest physical to actual 
physical addresses—in hardware.

CPU designers: might as well, we’re 
extending the ISA to better facilitate 
virtualization anyway.

❏ Intel Extended Page Tables (EPT)
❏ ARM Stage-2 Page Tables



Recap: Modern Day Virtualization

Modern CPUs facilitate virtualization of guest 
operating systems by adding another layer of 
privilege and MMU translation; like how 
user/kernel-mode context switching isolates user 
programs, but for guest operating systems.

Probably shouldn’t be necessary in an ideal world, 
but multiplexing operating systems onto the same 
physical hardware has become necessary.

➢ Fragmented ecosystems: how do you run 
Windows programs on a Mac?

➢ Additional layer of hardware-level isolation: 
vulnerabilities in a massive, popular piece of 
software like Windows are more often 
found/exploited than a smaller, 
narrowly-focused hypervisor

CPU

Virtual CPU

Physical CPU

Hypervisor-mode
GPA -> HPA

Kernel-mode
VA -> GPA



Brief Aside: Nintendo Switch Emulation!



Hypervisors Today

Type I Type II



Linux Kernel-based Virtual Machine (KVM)

A Linux kernel module for exposing 
hypervisor functionality via an 
ioctl() interface on a 
pseudo-device at /dev/kvm—just like 
the HW7 Farfetch’d optional part!

It abstracts over the the virtualization 
features of various CPUs to enable 
running a virtual CPU on any 
supported processor.



Demo: Running a 
program with 
privileged 
instructions
(successfully)



Thanks!


