
Virtualization:
Concepts and Applications
Kent Hall

A Refresher

➢ Think user/kernel mode
➢ CPU can only execute a subset of instructions in user mode, must elevate to

kernel mode (e.g. via a system call) to perform privileged operations
➢ User programs are compiled to operate within the bounds of user mode;

executing a privileged instruction will get trapped and likely killed by the OS

How do we run a program
which expects to be able to
perform privileged
operations? 🤔
e.g. another OS

Demo: Running a
program with
privileged
instructions

Computers are turing-complete, why
not write a program which does
everything a CPU does to “emulate” a
machine that runs our privileged
executable code?

struct virtual_cpu {

int mode;

int interrupts_enabled;

...

};

struct virtual_cpu vcpu;

...

while (fread(&instruction, sizeof(instruction), os_executable)) {

if (instruction == MASK_INTERRUPTS)

vcpu.interrupts_enabled = 0;

if (instruction == UNMASK_INTERRUPTS)

vcpu.interrupts_enabled = 1;

if (instruction == SOFTWARE_INTERRUPT_INSTRUCTION)

if (vcpu.mode == 1) // virtual CPU is in user mode

vcpu.mode = 0; // we will enter kernel mode

...

}

CPU Emulation

CPU Emulation

👍
➢ Emulator is just a normal user

program, basically an interpreter
for machine code

➢ Regardless of our host machine,
we can run a guest compiled for
any architecture, privilege, etc.

👎
➢ Really, really slow compared to

executing instructions natively
on the CPU

➢ We’re emulating every single
instruction, not just the
privileged ones; far from optimal
when the guest architecture is
the same as the host machine

Trap-and-Emulate

The guest operating system largely
executes in user-mode, but unlike
emulation, instructions are executed
directly on the CPU; in the event we run into
any privileged instructions, we trap to
kernel-mode for emulating the operation
and maintaining CPU state for the guest’s
“virtual” CPU.

load reg0, 5 ✅

load reg1, 6 ✅

add reg0, reg1 ✅

mask_interrupts ❌

next_instruction ❓

if (fault_instruction == MASK_INTERRUPTS)

vcpu.interrupts_enabled = 0;

...

return_to_vcpu();

jump to trap handler

user-mode
(guest OS)

kernel-mode
(host OS / VMM / hypervisor)

jump to right after
the emulated
instruction

Trap-and-Emulate

👍
➢ Much faster than full emulation,

we only emulate the “sensitive”
instructions that could interact
with host OS state

➢ Non-privileged instructions are
executed natively on the CPU,
reducing overhead greatly

👎
➢ Only possible if the CPU actually

traps on every “sensitive”
instruction

➢ Major architectures, such as x86
and ARM, do not

To Trap or Not to Trap:
x86 Example

PUSHF ✅

POP EAX ✅
if (fault_instruction == PUSH_FLAGS) {

int val = vcpu.interrupts_enabled;

do_push_stack(vcpu, val);

}

...

return_to_vcpu();

oopsie, we
never trap!

user-mode
(guest OS)

kernel-mode
(host OS / VMM / hypervisor)

x86 ISA includes many “sensitive” instructions which
can be executed at the user privilege level. One such
instruction is PUSHF, which reads some CPU state flags
and pushes them onto the stack. These flags include IF,
the interrupt enable flag.

guest execution
continues having
read host CPU state

// guest disabled interrupts earlier
long flags;
spin_lock_irqsave(lk, flags); // does PUSHF
...
spin_lock_irqrestore(lk, flags); // enables interrupts??

Virtualizing the Non-Virtualizable (before it was cool)

1974

Popek and Goldberg

formally define: “sensitive”
instructions must all trap for
an architecture to be
“virtualizable”1

1998

Intel Corporation

engineers are convinced that
their processors cannot be
virtualized in any practical
sense2

???

1999

VMware

releases the first x86
virtualization product, a
desktop hypervisor software3

1. https://en.wikipedia.org/wiki/Popek_and_Goldberg_virtualization_requirements
2. https://personal.utdallas.edu/~sridhar/ios/ref/virt_book.pdf
3. https://en.wikipedia.org/wiki/VMware_Workstation

https://en.wikipedia.org/wiki/Popek_and_Goldberg_virtualization_requirements
https://personal.utdallas.edu/~sridhar/ios/ref/virt_book.pdf
https://en.wikipedia.org/wiki/VMware_Workstation

Virtualizing the Non-Virtualizable (before it was cool)

VMware had to get creative to enable
virtualization on x86; they employed binary
translation, essentially patching over the actual
guest binary to enable emulation of any
sensitive instructions.

MOV EAX, 5 ✅

MOV EBX, 6 ✅

ADD EAX, EBX ✅

PUSHF ✅

no trap 😔

MOV EAX, 5 ✅

MOV EBX, 6 ✅

ADD EAX, EBX ✅

...

INT X ❌

we trap 😃

Hardware Support

If there’s no way under the current ISA design to
trap sensitive instructions to our higher privilege
level, and we need to maintain backwards
compatibility with all the existing executable
code out there, let’s just slap on an additional
layer of privilege!

❏ Intel VT-x: a new CPU mode that is
completely orthogonal to the existing
privilege levels: root vs. non-root mode

❏ ARM Virtualization Extensions: an
additional level of privilege, EL2, which
sits on top of the existing privilege levels

Hardware Support

➢ Orthogonal non-root mode
maintains “shadow” state which
parallels all root mode CPU state

➢ Shadow state is stored in one
giant “virtual machine control
structure” (VMCS), and must be
restored/saved upon entry/exit
to root mode all at once

➢ Additional EL2 level of privilege
with its own independent state

➢ Can selectively save/restore CPU
state when entering from /
returning to lower privilege,
allowing the hypervisor more
fine-tune control

x86 Example Revisited
PUSHF ✅

POP EAX ✅
if (fault_instruction == PUSH_FLAGS) {

int val = vcpu.interrupts_enabled;

do_push_stack(vcpu, val);

}

...

return_to_vcpu();

we never trap—
but this is ok!

non-root kernel-mode
(guest OS)

root kernel-mode
(host OS / VMM / hypervisor)

guest execution
continues having read
shadow CPU state ⃠

PUSHF will read the
shadow CPU state
flags which were
restored from
VMCS upon
VMRESUME.

// guest disabled interrupts earlier
long flags;
spin_lock_irqsave(lk, flags); // does PUSHF
...
spin_lock_irqrestore(lk, flags); // intrs stay disabled!

The Problem with Paging

Guest OS wants to set up its page
tables to map virtual addresses to
physical memory, but the VMM
obviously can’t allow it to have free
reign over actual memory. Instead,
the illusion must be created by
trapping any guest attempts at page
table configuration and maintaining
“shadow page tables”.

Second Level Address Translation

Instead of the VMM trapping everything and
doing the heavy-lifting in software, let’s let
the guest manage its own page tables and
have the MMU handle an additional level of
translation—from guest physical to actual
physical addresses—in hardware.

CPU designers: might as well, we’re
extending the ISA to better facilitate
virtualization anyway.

❏ Intel Extended Page Tables (EPT)
❏ ARM Stage-2 Page Tables

Recap: Modern Day Virtualization

Modern CPUs facilitate virtualization of guest
operating systems by adding another layer of
privilege and MMU translation; like how
user/kernel-mode context switching isolates user
programs, but for guest operating systems.

Probably shouldn’t be necessary in an ideal world,
but multiplexing operating systems onto the same
physical hardware has become necessary.

➢ Fragmented ecosystems: how do you run
Windows programs on a Mac?

➢ Additional layer of hardware-level isolation:
vulnerabilities in a massive, popular piece of
software like Windows are more often
found/exploited than a smaller,
narrowly-focused hypervisor

CPU

Virtual CPU

Physical CPU

Hypervisor-mode
GPA -> HPA

Kernel-mode
VA -> GPA

Brief Aside: Nintendo Switch Emulation!

Hypervisors Today

Type I Type II

Linux Kernel-based Virtual Machine (KVM)

A Linux kernel module for exposing
hypervisor functionality via an
ioctl() interface on a
pseudo-device at /dev/kvm—just like
the HW7 Farfetch’d optional part!

It abstracts over the the virtualization
features of various CPUs to enable
running a virtual CPU on any
supported processor.

Demo: Running a
program with
privileged
instructions
(successfully)

Thanks!

