
Speed read()ing
Accelerating RocksDB Reads Using eBPF

Jeremy Carin and Tal Zussman

I

Background

● Popular embedded key-value storage engine
● Developed by Facebook, based on Google’s LevelDB
● Highly-optimized, written in C++, very fast

RocksDB: Log-Structured Merge (LSM) Tree

Write Read

DISK

RAM

Write-ahead
Log

Memtable

Immutable memtable

Level 0

Level 1

Level 2

SST SST

SST SST SST

SST SST SST SST

Flush

Compaction

Compaction

SST File
Data Blocks

● Each block stores many
key-value pairs in a range

● Key may or may not be in
data block

Index block
● Stores offsets of data

blocks for key range

Footer
● Stores file metadata
● Usually cached

Read

SST File

Footer
● Stores file metadata
● Usually cached

Read

And more…
● Metadata blocks
● Bloom filters
● Varint encoding
● Delta encoding
● Atomics
● Lockless concurrency
● Skip lists
● Hash indexing
● … but these are our problems,

not yours :’)

Data Blocks
● Each block stores many

key-value pairs in a range
● Key may or may not be in

data block

Index block
● Stores offsets of data

blocks for key range

L0 L0 L1 L1

L0 L0 L1 L1

II

Background

● (Extended) Berkeley Packet Filter
● 1992: BPF developed for analyzing and filtering network traffic (packets)
● Early 2010s: Reworked in Linux, became eBPF (Linux 3.18)

● Sandboxed programs in a privileged context (kernel)

Running an eBPF function

● eBPF bytecode verified when loaded, and JIT-compiled when run
○ Instructions are simulated and change in VM state is observed
○ eBPF bytecode instructions –> modern assembly language instructions

● Use bpf() syscall (low-level interface) or libbpf (C/C++/Rust)

Image source:
https://cdn.open-nfp.org/media/documents/demystify-ebpf-jit-compiler.pdf

https://cdn.open-nfp.org/media/documents/demystify-ebpf-jit-compiler.pdf

Image Source: https://ebpf.io/what-is-ebpf/

https://ebpf.io/what-is-ebpf/

Verifier

● Verification ensures:
○ Termination (no infinite loops)
○ Memory safety
○ No kernel crashes (assuming verifier is implemented correctly 💀)

● No false positives! But maybe false negatives…
● Two major stages

○ Control flow stage: DAG check for infinite loops, other CFG checks
○ Data flow stage: Simulates instructions and observes states

■ Pruning and liveness analysis: keep track of safe states to avoid re-simulating

Limitations

● Halting problem is undecidable + want fast verification
○ Instruction and jmp limit
○ Limited set of registers, small stack

● Safety
○ Memory access checks and no dynamic memory
○ Limited set of kernel functionality

● Used to write eBPF bytecode by hand
○ Can now be compiled from C
○ Type safety ensured at compile time

Kernel modules vs. eBPF functions

 Kernel
Kernel
Module

Kernel module
● Extension of kernel
● Exported symbols
● May break across kernel versions
● Unsafe – can crash kernel
● Requires root permissions (CAP_SYS_MODULE)

eBPF function
● In-kernel virtual machine
● Limited access to kernel functions
● Safe – sandboxed and verified
● Event-driven, flexible
● More granular permissions (capabilities)

Kernel

JIT compiler

eBPF

https://man7.org/linux/man-pages/man7/capabilities.7.html

Verifier Example

Verifier output is…

● Verbose, to say the least
● Not exactly elucidating…
● A work in progress…

XRP

III

XRP
XRP: In-Kernel Storage Functions with eBPF

Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao, Evan
Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan Stutsman, and Asaf
Cidon.

Won Best Paper at OSDI 22.

https://www.usenix.org/system/files/osdi22-zhong_1.pdf

XRP
Goal

● For a dependent series of reads, do program logic in-kernel

eBPF

XRP
Challenges

● Files contain logical offsets, NVMe driver only knows physical offsets
○ Need a method to convert

● Statefulness
○ Sequence of dependent reads
○ eBPF programs are usually stateless

● And much more…

 Syscall Layer

 File System and Block Layer

 NVMe Driver

Storage Device

read_xrp(fd, buf, size, offset, bpf_fd, scratch)

● Process data buffer
● Update context for NVMe

request or return

eBPF Function

NVMe
request

Interrupt
handler

NVMe
request

Call eBPF

Interrupt
handler

NVMe
request

Call eBPF

Interrupt
handler

Call eBPF

Metadata Digest

struct bpf_xrp {
 char *data;
 int done;
 uint64_t next_addr[16];
 uint64_t size[16];
 char *scratch;
};

IV

NVMe and Interrupts
● NVMe: Non-Volatile Memory Express

○ Standard for accessing non-volatile storage (usually NAND flash drives)
○ Can access drives over PCIe (local) or through TCP or RDMA (network – NVMe-oF)
○ Created in 2011

● PCIe: Peripheral Component Interconnect Express
○ Standard for interface between motherboard and expansion cards (SSDs, GPUs, etc.)
○ Created in 2003

NVMe and Interrupts
Request Submission and Completion

● Paired submission and completion queue (ring buffers)
● Driver:

○ Adds request to SQ and updates SQ tail
○ Rings hardware SQ doorbell (new tail)
○ Waits

NVMe and Interrupts
Request Submission and Completion

● Paired submission and completion queue (ring buffers)
● Hardware (controller chip):

○ Takes a request from SQ and updates SQ head
○ Handles request
○ Adds completed request to CQ and updates CQ tail
○ Generates interrupt
○ Repeat

NVMe and Interrupts
Request Submission and Completion

● Paired submission and completion queue (ring buffers)
● Driver (again):

○ Wakes up
○ Takes request from CQ and updates CQ head
○ Rings hardware CQ doorbell (new head)
○ Handles interrupt

NVMe and Interrupts
Request Submission and Completion

● Process that issued the I/O is sleeping, waiting for completion
○ Wait queue!

● I/O in the kernel is inherently asynchronous

NVMe and Interrupts
Interrupts

● Raised by hardware, handled by software
● For NVMe, indicates completed request - needs to be handled

NVMe and Interrupts
Interrupts

● In Linux, split into upper-half and lower-half
● Upper-half:

○ Preempts currently running process – runs in its execution context with higher privilege level
○ How does this affect scheduling timeslices? XRP Section 4.3
○ Keep it short and simple – avoid reentrancy and concurrency issues
○ Do the absolutely necessary, urgent work, then “wake up” lower-half

NVMe and Interrupts
Interrupts

● In Linux, split into upper-half and lower-half
● Lower-half:

○ Lower-half “woken up” by front-half handler
○ Does the majority of the work
○ Put eBPF function call in the lower-half interrupt handler

NVMe and Interrupts
Interrupts

● In Linux, split into upper-half and lower-half
● NVMe example:

○ pci_request_irq()
○ nvme_irq()

https://elixir.bootlin.com/linux/v6.3/source/drivers/nvme/host/pci.c#L1558
https://elixir.bootlin.com/linux/v6.3/source/drivers/nvme/host/pci.c#L1081

Now, let’s get started!

Integration

● Kernel modifications
○ Index blocks can be big – how do we store one contiguously in memory?
○ Multi-file support for XRP

● eBPF implementation
○ Reimplement SST file parsing in eBPF

● Userspace modifications
○ Modify RocksDB to call read_xrp()
○ Set up multi-file read
○ RocksDB has a cache – how do we use it when we’re in the kernel?

Huge Pages

V

Huge Pages

What is a huge page?

● Larger-than-default page size
● Common sizes: 2MB and 1GB
● Supported by most modern

operating systems
● Configurable by users and

applications

Image Source: https://dl.acm.org/doi/10.1145/3297280.3297425

https://dl.acm.org/doi/10.1145/3297280.3297425

Huge Pages

TLB: 1,500-2,000 entries per CPU core (typically)

With 2MB pages:

2,000 entries * 2 MB
= 4 GB

With 4KB pages:

2,000 entries * 4 KB
= 8 MB

Page table entries: 512x smaller for same working set
● Reduced memory usage for page tables
● Easier caching of page tables

Huge Pages

Pros

● Reduces translation lookaside
buffer (TLB) overhead

● Improves performance for large
memory workloads

● Decreased page table
management overhead

● Enhanced cache locality

Cons

● Increased memory waste for small
workloads

● Limited availability of large
contiguous memory regions

● Fragmentation
● Kernel code complexity (compound

pages)

Huge Pages

Acquisition

● Using hugetlbfs:
○ Pre-allocate huge pages with pseudo-filesystem
○ mmap() with MAP_HUGETLB flag and huge page size

● Using transparent huge pages:
○ Kernel dynamically allocates huge pages, if available
○ posix_memalign() allocates aligned memory
○ madvise() with MADV_HUGEPAGE flag on allocated, but unused memory

Interlude

VI

Everything is broken

● Huge pages broke everything
● Our code did not work
● Kernel corruption, memory corruption, file system corruption
● Heretofore unseen dmesg output

Interlude

Two bugs

1. Can’t read more than 4096 bytes on resubmission
2. Reading garbage if we try to read the whole file initially

Interlude

Block Layer

VII

What is it?

● Interface between filesystem and block device drivers
● All the code in Linux block subdirectory
● Two sub-layers: bio layer and request layer

○ bio layer: manipulate I/O requests, pass them to request layer
■ Thin layer, doesn’t do much

○ Request layer: schedule I/O requests and pass them to driver

Block Layer

Block Layer
struct request_queue

struct request

struct request

struct request

struct request
struct bio *bio, bio_tail;

uint __data_len;
sector_t __sector;

struct
bio

struct
bio

struct
bio

struct bio
struct bio_vec *bi_io_vec;
unsigned short bi_vcnt;

struct bvec_iter

sector_t bi_sector;
uint bi_size;
uint bi_idx;

uint bi_bvec_done;

struct
bio_vec

struct
bio_vec

struct
bio_vec

struct bio_vec
struct page *bv_page;

uint bv_len;
uint bv_offset;

● A bio_vec can correspond
to a single page or multiple
physically contiguous pages

● The bio_vec array
describes the entire buffer
(virtually contiguous)

File System → Block Layer

● submit_bio(): Pass a created bio to the block layer
● bio vs. buffer_head

○ buffer_head is the original interface
○ bio represents an I/O operation, buffer_head represents a single buffer
○ bio is more lightweight, flexible - can represent multiple pages + disk blocks

Block Layer

But why does the driver care about this?

● Driver is below the block layer - why do we care about the internals of
struct request beyond the disk offset and the size?

Block Layer

DMA Mapping

VIII

DMA: Direct Memory Access

● Allows devices to write data to memory without going through the CPU
● When a process wants to read:

○ Driver allocates a DMA buffer, tells hardware to write data there
○ Process sleeps
○ Hardware writes data to buffer, generates interrupt

DMA Mapping

NVMe DMA Mapping

● Our problem: Can’t read more than 4096 bytes on resubmission
● The NVMe driver uses the struct bio to figure out DMA mapping size
● When we resubmit, we use the original DMA buffer

○ If we resubmit with a larger size, the DMA buffer is too small
○ Need to allocate a new DMA buffer with new size

● On resubmission, structs need to be updated to reflect new size

DMA Mapping

NVMe DMA Mapping

● Still seeing a kernel BUG()...
● Kernel seems to expect consistency between original request and

completed request…
● blk_mq_end_request()
● Save original values and reset when done

DMA Mapping

https://elixir.bootlin.com/linux/v5.12/source/block/blk-mq.c#L562

Extents

IX

Extents

Logical File

Disk

Extent Extent
Block

● ext4 is an extent-based file-system
● File blocks not necessarily contiguous on disk

Extents

● NVMe driver can only read contiguous blocks in one request – extents at
file system layer

● Why might we be seeing garbage?

Extents

● Reads past extent boundary – garbage
● Need to update metadata digest query size
● If metadata digest tells us we’d be crossing an extent boundary, just give

up

Multi-file support

X

L0 L0 L1 L1

To review…

Multiple files

 Syscall Layer

 File System and Block Layer

 NVMe Driver

Storage Device

read_xrp(fd, buf, size, offset, bpf_fd, scratch)

● Process data buffer
● Update context for NVMe

request or return

eBPF Function

NVMe
request

Interrupt
handler

NVMe
request

Call eBPF

Interrupt
handler

NVMe
request

Call eBPF

Interrupt
handler

Call eBPF

Metadata Digest

struct bpf_xrp {
 char *data;
 int done;
 uint64_t next_addr[16];
 uint64_t size[16];
 char *scratch;
};

Simplifying assumptions

● The eBPF program has an array of file descriptors
● When updating context for NVMe request, specify new fd in struct

bpf_xrp

Multi-file support

struct bpf_xrp {
 char *data;
 int done;
 uint64_t next_addr[16];
 uint64_t size[16];
 char *scratch;
};

struct bpf_xrp {
 char *data;
 int done;
 uint64_t next_addr[16];
 uint64_t size[16];
 uint64_t fd[16];
 char *scratch;
};

Problem

● Metadata digest: uses inodes to translate logical to physical address
● Need to convert file descriptors to inodes

Solution

● Cache file descriptor table
● XRP runs in interrupt context – need to use cached version

Multi-file support

 Syscall Layer

 File System and Block Layer

 NVMe Driver

Storage Device

read_xrp(fd, buf, size, offset, bpf_fd, scratch)

● Process data buffer
● Update context for NVMe

request or return

eBPF Function

NVMe
request

Interrupt
handler

NVMe
request

Call eBPF

Metadata Digest

struct bpf_xrp {
 char *data;
 int done;
 uint64_t next_addr[16];
 uint64_t size[16];
 uint64_t fd[16];
 char *scratch;
};fdtable

file file

inode inode

User space and eBPF

XI

Implementation

● Replicate RocksDB logic to parse SST file in eBPF
● Limitations of eBPF code require

○ Function-by-function verification
○ Maximum bounds on loops – iterating over index block or data block
○ Reimplementation of simple functions like strcmp()
○ Pre-allocate potential dynamic memory buffers
○ And much more…

eBPF

Implementation

● Earlier assumption – eBPF program is given array of file descriptors
● How do we build the array?

User space

Read

DISK

RAM

Memtable

Immutable memtable

Level 0

Level 1

Level 2

SST SST

SST SST SST

SST SST SST SST

Flush

Compaction

Compaction

Read

RAM

RAM

Memtable

Immutable memtable

SST SST

SST SST SST

SST SST SST SST

XRP Context

fd

fd

fd

First:
Lookup, but don’t read

Second:
read_xrp()

XRP support

Block Cache

● RocksDB has an in-memory cache for index and data blocks
● How can we use it?
● We can’t read the cache contents from eBPF

User space

Read

RAM

SST SST

SST SST SST

SST SST SST SST

fd

fd

fd

XRP and Cache support

Block Cache

offset/size

offset/size

offset/size

RAM

Memtable

Immutable memtable

XRP Context

SST
file

Block Cache

● There’s a problem: the block cache gets populated when RocksDB reads
● If we only use XRP, we have to

○ Transfer the blocks we read in-kernel back to RocksDB (hard!)
○ or, do something simpler:
○ Sampling – make a small percentage of reads using regular RocksDB

User space

XRP and Cache support

Read

10% 90%

RocksDB makes a read

● In user space:
○ Collect array of file descriptors + offsets for XRP to use
○ Call read_xrp() , passing in eBPF context + metadata

● In kernel:
○ Prepare NVMe request
○ Call eBPF program, resubmit

● In eBPF:
○ Parse data buffer
○ Prepare next NVMe request (size, offset, fd), or return

Putting it all together

● Uses Perf profiler to capture how long program spends inside functions
● Similar to ftrace, better for timing and visualization

Vanilla RocksDB

XRP RocksDB

Flame Graphs

https://github.com/minemanpi/rocksdb-flamegraphs/raw/main/vanilla-rocksdb.svg
https://raw.githubusercontent.com/minemanpi/rocksdb-flamegraphs/main/perf.svg

There’s a lot we don’t have time to cover:

● Thread-local memory
● Direct I/O (I/O that skips the page cache)
● Page cache behavior
● I/O scheduling
● IOMMUs
● NVMe-oF
● XRP vs kernel bypass (SPDK)

Left Unsaid

HWs

● HW1 (linux-list): Modules vs. eBPF
● HW3 (multi-server): mmap(), thread-local storage, huge pages
● HW4 (tabletop): File descriptor table
● HW5 (fridge): Key-value stores, wait queues
● HW6 (freezer): Interrupts and scheduling
● HW7 (farfetchd): Huge pages, DMA mapping
● HW8 (pantry): Extents, block layer, page cache

Connections

Classes

● COMS 4111 Databases: LSM Tree
● COMS 4115 Programming Languages & Translators: eBPF JIT and verifier
● CSEE 4119 Computer Networks: eBPF use cases
● Some Computer Engineering class (probably): DMA, interrupts
● EECS E6897 Cloud Data Infrastructure: everything!

Connections

Acknowledgements

Ioannis Zarkadas, Sheng Jiang, and Yuhong Zhong, Columbia University; Md
Ashfaqur Rahaman, University of Utah; Hubertus Franke and Jonas Pfefferle,
IBM; Junfeng Yang, Columbia University; Kostis Kaffes and Amy Tai, Google;
Ryan Stutsman, University of Utah; Asaf Cidon, Columbia University

Asaf is always looking for OS students to conduct research in his lab!
asaf.cidon@columbia.edu

mailto:asaf.cidon@columbia.edu

