Interrupts, Spin Locks,
and Preemption

W4118 Operating Systems I

https://cs4118.qgithub.io/www/2024-1/

Credits to Jae


https://cs4118.github.io/www/2024-1/

Interrupts

e Hardware interrupts

o asynchronous

o e.g. network packet arrival, timer, key press, mouse click
e Exceptions/Faults

o synchronous

o e.g. dividing by zero, page fault
e Software interrupts

o synchronous

o x86 assembly int: raise software interrupt

o e.g. syscall (int 0x80), debugger



Kernel Execution: Process Context

e System calls execute kernel code on behalf of a process

e Operations may sleep:
o Sleeping requires the associated task_struct to be placed on a wait queue and
have schedule () called to switch to another task

e One kernel stack for each process



Kernel Execution: Interrupt Context

e Interrupt handlers run in interrupt

e Operations cannot sleep — execution does not have an associated task and

therefore can’t interact with the wait queue and schedule ()
o e.g.kmalloc () ,copy to/from user () may trigger I/O which causes the caller to
sleep until the I/O is satisfied. Can’t be called from interrupt context

e All handlers share one interrupt stack per processor:
o i.e., not the kernel stack of the interrupted task



Interrupt Handling

Key Idea: Defer most work for later

e Only time-critical work should be dealt with in the handler so that we can return

to the interrupted task ASAP. Push remainder of the work to “bottom half”

o Several kernel mechanisms available to execute some work at a later time (e.g.,
softirgs, tasklets, kernel threads)

e Single interrupt will not nest, so handler need not be reentrant
o ... but the handler can be interrupted by a different interrupt



Interrupt Handling Example

Network Packet Arrival

e Top Half: acknowledge packet arrival, move packets from NIC to memory,
prepare device for further packet arrival

e Bottom Half: propagate packets through kernel networking stack, e.g., TCP/IP
processing



Mutual Exclusion

e semaphore
e pthread_mutex

pthread_mutex_lock(&balance_lock);
++balance;
pthread_mutex_unlock(&balance_lock);

These are sleeping locks. The calling task is put to sleep while it waits for the critical
section to become available.

Is this always a good idea when waiting?



Spin Lock

Instead of sleeping until the critical section is free, spin locks poll the critical section
until it is free.

High-level idea int flag = 0;

lock() {
while (flag == 1)

lock () polls until flag ==

then sets flag ==

unlock () sets flag == } L] e Any issues?
unlock() {
flag = 0;

}



Spin Lock

Instead of sleeping until the critical section is free, spin locks poll the critical section
until it is free.

High-level idea int flag = 0;
. lock() £
lock () polls until flag == 0 Y

then sets flag == 1
// This gap between testing and setting the variable
// creates a race condition!

unlock () sets flag == 0

Non-atomic test & set g flag = 1;
leads to mutual exclusion

. . unlock() {
VlOlatlon flag = 0;

}



Spin Lock

Instead of sleeping until the critical section is free, spin locks poll the critical section
until it is free.

High-level idea

int flag = 0;
lock () polls until flag ==
lock() {
then sets flag == while(test_and_set(&flag))
unlock () sets flag == ¥
Correct implementation needs UnLocki) o
atomic test and set hardware flag = 0;

instruction }



Atomic Test and Set

In C pseudocode, test and set hardware instruction looks like:

int test_and_set(int *xlock) {
int old = *lock;
*lock = 1;
return old;



Linux Kernel Spin Locks I

e spin lock() / spin unlock ()

o keep the critical sections as small as possible

o must not lose CPU while holding a spin lock
m other threads will wait for the lock for a long time

o must NOT call any function that can potentially sleep
m e, kmalloc(), copy from user()

o spin_lock () prevents kernel preemption by ++preempt count
m in a uniprocessor, that's all spin_lock () does

o hardware interrupt is ok unless the interrupt handler may try to lock this spin lock
m spin lock is not recursive: same thread locking twice will deadlock



Linux Kernel Spin Locks II

e spin lock irgsave() / spin unlock irqgrestore()
o save current interrupt state, disable all interrupts on local CPU, lock, unlock, restore
interrupts to how they were before
o need to use this version if the lock is something that an interrupt handler may try to
acquire
o no need to worry about interrupts on other CPUs — spin lock will work normally
o again, no need to spin in uniprocessor — just ++preempt count & disable irq
e¢ spin lock irqg() /spin_unlock irqg()
o disable & enable irqg assuming it was enabled to begin with
o should not be used in most cases



Spinning vs. Sleeping Lock

Sleeping lock incurs cost of context-switch to put caller to sleep
Spinning lock consumes CPU time by polling

Can only use spin locks in interrupt context

Can'’t sleep while holding spin lock



Preemption

Sometimes the kernel needs to forcefully reclaim the CPU. It track a per-process
TIF NEED RESCHED flag. If set, preemption occurs by calling schedule () in the
following cases:

1. Returning to user space:

a. from a system call
b. from an interrupt handler

2. Returning to kernel from an interrupt handler, only if preempt count is zero
3. preempt count just became zero, right after spin unlock (), for example
4. Task running in kernel mode calls schedule () itself — e.g., blocking syscall



