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Page Table so Far

32-bit virtual addresses — 4GB virtual memory

4KB pages — 4GB / 4KB = 2*20 = 1M pages

virtual page number

+ — +

Page table entry = 4B = 20 bits for PFN (assuming 4GB physical memory)

+ 12 bits for metadata



Page Table Entry Structure

Page-Table Entry (4-KByte Page)
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Write-Through
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Page Table so Far

32-bit virtual addresses — 4GB virtual memory

4KB pages — 4GB / 4KB = 2*20 = 1M pages

virtual page number

+ — +

e 20 bits———————— |--12 bits-|

Page table entry = 4B = 20 bits for PFN (assuming 4GB physical memory)
+ 12 bits for metadata

=> 4B x 1M entries = 4MB per page table



Problem: Sparsity

Virtual Memory (4GB) Page Table (1M entries) Physical Memory (4GB)

Y Y




2-Level Page Table

Page table entry = 4B and page = 4KB
= We can fit 4KB / 4B = 1024 entries into one page

= 1M entries and 1K entries per page = 1K pages needed

Idea: Let's allocate only the page table pages we are going to use

How: Page table global directory (PGD), which has 1024 entries, 1 entry per page
table chunk

""The PGD fits exactly into 1 page!!!



2-Level Page Table

32-bit virtual address

| PGD (10 bits)| PTE (10 bits)| offset (12 bits)

~ |

Page Global Directory
(1K entries)

PTBR

Page Table \

(1K entries each)

Physical Memory (4GB)

= PGD Entry = PGD base (from PTBR)
+ PGD index

= Frame Base = PTE Base (from PGD entry)

+ PTE Index

= Physical Addr = Frame Base

+ offset



Bigger Memory?

Let’'s say we have 64GB of physical memory (but still 4GB virtual address space)
= 36-bits physical addresses [12-bit offset and 24-bit PFN]

= 32-bit page table entry too small — 64-bit = 8B

= 512 entries per page — 2K pages needed

PGD used to have 1024 entries but now:

e PGD can only fit 512 entries
e There are 2K page table chunks

Problem: We now have 4 PGDs. How do we choose what PGD to use?



Bigger Memory? More levels

32-bit virtual address

|PGDP (2 bits) | PGD (9 bits) | PTE (9 bits) | offset (12 bits) |

—

—
- \\\\\\\\\\\\\.- —_—___‘“J-______’
b\
PGD Pointer Table Page Global Directory
(4 entries) (512 entries)

| PTBR | Page Table \

(512 entries each)

Physical Memory (64GB)

= 9 bits for PTE (512 pages)
= 9 bits for PGD (512 chunks)
= 2 bits for PGDP (4 PGDs)



Even more (4!) levels

64-bit CPU — 16EB

48-bit virtual addresses — 256 TB of addressable virtual memory

= 64-bit page table entry and 4KB pages

48-bit virtual address

PGD (9 bits)

PUD (9 bits)

PMD (9 bits)

PTE (9 bits)

offset (12 bits)

1. Page Global Directory

2. Page Upper Directory

3. Page Medium Directory

4. Page Table Entry




Why not 5 levels?

64-bit CPU — 16EB

57-bit virtual addresses — 128 PB of addressable virtual memory

= 64-bit page table entry and 4KB pages

57-bit virtual address

PGD (9 bits) | P4D (9 bits) | PUD (9 bits) | PMD (9 bits) | PTE (9 bits) | offset (12 bits)




Why not 5 levels?

64-bit CPU — 16EB

57-bit virtual addresses — 128 PB of addressable virtual memory

= 64-bit page table entry and 4KB pages

57-bit virtual address

PGD (9 bits) | P4D (9 bits) | PUD (9 bits) | PMD (9 bits) | PTE (9 bits) | offset (12 bits)




Another Idea: Inverted Page Tables

The number of physical pages/frames is limited.

Why not have one page table entry for every physical page?

E.g., 512GB physical memory — 128 GB / 4KB = 32M entries in total

The entry contains:

Physical page number
Virtual page number
Metadata

PID

Challenge: How to make a fast lookup?

Used in IBM Power




Problem: Memory Access Amplification

In a 5-level page table, we can incur five additional memory accesses per pointer
dereference!

But memory accesses exhibit locality:

e Temporal: programs typically work within recently accessed memory
e Spatial: programs tend to access adjacent memory locations (e.g. array)

= Observation

At any given time, program only needs a small number of VPN->PFN mappings!



Translation Lookaside Buffer (TLB)

MMU employs a fast-lookup hardware cache called “associative memory” which is
small in size and supports fast parallel search

CPU | VPN offset

TLB
VPN PFN

TLB hit

\ 4
—

PFN offset >

TLB miss | Page Table

> Hierarchy Physical

Memory




Why TLB helps?

Assumptions:

e memory cycle consumes 1 unit of time

e TLB lookup time: €
e TLB hit ratio: a, percentage of times than a VPN->PFN mapping is found in the
TLB

o Expect hit ratio to be high, like .95-.99. 4KB pages are pretty big and locality says we will probably
stay within the region.

e 1-level page table



Why TLB helps?

EAT = (1 +e) a+ (2 +e)(1 - a)
— If TLB hit, then just incur TLB lookup and memory cycle

EAT =a +ea+2 +e - ea - 2a

EAT =2 + e - a

— Assuming a high TLB-hit ratio and a low TLB lookup time, EAT approaches the
cost of 1 memory cycle (worth it!)



TLB when context switching

Option 1: flush the entire TLB

e x86 has load cr3 instruction: load page table base and flush TLB
e TLB entries have metadata bits, e.g. “valid” bit, set all to 0 to “flush” TLB
e this makes context switch pretty expensive, we lose all our cached lookups

Option 2: attach ID to TLB entries

e associate each task with an address space identifier (ASID)
e don’t have to flush TLB on context switch, just check ASID associated with caller

x86 also has INVLPG addr instruction, invalidates 1 TLB entry

e e.g., after munmap (), region is no longer mapped



TLBs in x86

e Typical: 64-2K entries, 4-way to fully associative, 95% hit rate
e Modern CPUs add second-level TLB with ~1,024 entries
e Often separate instruction and data TLBs

Need to take caching into account!

e Do caches use virtual or physical addresses?
e The L1 is virtually indexed/physically tagged (why?)
e L2/L3 etc. use physical addresses



A different MMU: MIPS

e Hardware checks TLB on application load/store
o References to addresses not in TLB trap to kernel
e Each TLB entry has the following fields: Virtual page, Pid, Page frame,
metadata
e Kernel itself is unpaged
o All of physical memory is contiguously mapped in high VM
o Kernel uses these pseudo-physical addresses
e User TLB fault handler is very efficient
o Two hardware registers reserved for it
o OS is free to choose page table format!



