
x86 Memory
Management

W4118 Operating Systems I

https://cs4118.github.io/www/2024-1/

Credits to Jae

https://cs4118.github.io/www/2024-1/

Page Table so Far
32-bit virtual addresses → 4GB virtual memory

4KB pages → 4GB / 4KB = 2^20 = 1M pages

Page table entry = 4B = 20 bits for PFN (assuming 4GB physical memory)

 + 12 bits for metadata

Page Table Entry Structure

Page Table so Far
32-bit virtual addresses → 4GB virtual memory

4KB pages → 4GB / 4KB = 2^20 = 1M pages

Page table entry = 4B = 20 bits for PFN (assuming 4GB physical memory)

 + 12 bits for metadata

=> 4B x 1M entries = 4MB per page table

Problem: Sparsity

2-Level Page Table
Page table entry = 4B and page = 4KB

⇒ We can fit 4KB / 4B = 1024 entries into one page

⇒ 1M entries and 1K entries per page ⇒ 1K pages needed

Idea: Let’s allocate only the page table pages we are going to use

How: Page table global directory (PGD), which has 1024 entries, 1 entry per page
table chunk

!!!The PGD fits exactly into 1 page!!!

2-Level Page Table
⇒ PGD Entry = PGD base (from PTBR)

 + PGD index

⇒ Frame Base = PTE Base (from PGD entry)

 + PTE Index

⇒ Physical Addr = Frame Base

 + offset

Bigger Memory?
Let’s say we have 64GB of physical memory (but still 4GB virtual address space)

⇒ 36-bits physical addresses [12-bit offset and 24-bit PFN]

⇒ 32-bit page table entry too small → 64-bit = 8B

⇒ 512 entries per page → 2K pages needed

PGD used to have 1024 entries but now:

● PGD can only fit 512 entries
● There are 2K page table chunks

Problem: We now have 4 PGDs. How do we choose what PGD to use?

Bigger Memory? More levels

⇒ 9 bits for PTE (512 pages)

⇒ 9 bits for PGD (512 chunks)

⇒ 2 bits for PGDP (4 PGDs)

Even more (4!) levels
64-bit CPU → 16EB

48-bit virtual addresses → 256 TB of addressable virtual memory

⇒ 64-bit page table entry and 4KB pages

 1. Page Global Directory 3. Page Medium Directory

 2. Page Upper Directory 4. Page Table Entry

Why not 5 levels?
64-bit CPU → 16EB

57-bit virtual addresses → 128 PB of addressable virtual memory

⇒ 64-bit page table entry and 4KB pages

Why not 5 levels?
64-bit CPU → 16EB

57-bit virtual addresses → 128 PB of addressable virtual memory

⇒ 64-bit page table entry and 4KB pages

Another Idea: Inverted Page Tables
The number of physical pages/frames is limited.

Why not have one page table entry for every physical page?

E.g., 512GB physical memory → 128 GB / 4KB = 32M entries in total

The entry contains:

● Physical page number
● Virtual page number
● Metadata
● PID

Challenge: How to make a fast lookup?

Used in IBM Power

Problem: Memory Access Amplification
In a 5-level page table, we can incur five additional memory accesses per pointer
dereference!

But memory accesses exhibit locality:

● Temporal: programs typically work within recently accessed memory
● Spatial: programs tend to access adjacent memory locations (e.g. array)

⇒ Observation

At any given time, program only needs a small number of VPN->PFN mappings!

Translation Lookaside Buffer (TLB)
MMU employs a fast-lookup hardware cache called “associative memory” which is
small in size and supports fast parallel search

Why TLB helps?
Assumptions:

● memory cycle consumes 1 unit of time
● TLB lookup time: ε
● TLB hit ratio: α, percentage of times than a VPN->PFN mapping is found in the

TLB
○ Expect hit ratio to be high, like .95-.99. 4KB pages are pretty big and locality says we will probably

stay within the region.
● 1-level page table

Why TLB helps?

TLB when context switching
Option 1: flush the entire TLB

● x86 has load cr3 instruction: load page table base and flush TLB
● TLB entries have metadata bits, e.g. “valid” bit, set all to 0 to “flush” TLB
● this makes context switch pretty expensive, we lose all our cached lookups

Option 2: attach ID to TLB entries

● associate each task with an address space identifier (ASID)
● don’t have to flush TLB on context switch, just check ASID associated with caller

x86 also has INVLPG addr instruction, invalidates 1 TLB entry

● e.g., after munmap(), region is no longer mapped

TLBs in x86
● Typical: 64-2K entries, 4-way to fully associative, 95% hit rate
● Modern CPUs add second-level TLB with ~1,024 entries
● Often separate instruction and data TLBs

Need to take caching into account!

● Do caches use virtual or physical addresses?
● The L1 is virtually indexed/physically tagged (why?)
● L2/L3 etc. use physical addresses

A different MMU: MIPS
● Hardware checks TLB on application load/store

○ References to addresses not in TLB trap to kernel
● Each TLB entry has the following fields: Virtual page, Pid, Page frame,

metadata
● Kernel itself is unpaged

○ All of physical memory is contiguously mapped in high VM
○ Kernel uses these pseudo-physical addresses

● User TLB fault handler is very efficient
○ Two hardware registers reserved for it
○ OS is free to choose page table format!

