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What is an operating system?

Software between the applications and the hardware

Makes the hardware useful to the programmer. How?
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What does an operating system do?

Provides abstractions for applications – [EASY]

- Manages and hides details of hardware
- Accesses hardware through low/level interfaces unavailable 

to applications

Provides protection between applications – [HARD]

- Prevents one process/user from messing with another



Why study OS?
OS is a mature field
- A handful of OS dominate the market
- High barrier for entry for a new OS

with many interesting open questions
- Security without sacrificing performance
- Scalability – fast networks, high core counts, low service times, big data…

and achieving high performance and efficiency is an OS issue
- e.g., high performance servers, apps that do not drain the battery, etc.

and a recent demand for new OS
- smart devices – IoT and data center computing



Just a library of standard services [no protection]

Standard interface

to access the hardware

Simplifying assumption:
- One program/user at a time
- No bad/malicious program/user (often bad assumption)

Problem: Poor utilization
- of hardware – e.g., CPU idle while waiting for a disk access
- of human user – e.g., waiting for a program to finish execution

Early operating systems
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       Run more than one

        process at a time

When one process blocks (waiting for disk, network, user) run another

Problem: What can a bad process do?

Idea: Multitasking
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       Run more than one

        process at a time

When one process blocks (waiting for disk, network, user) run another

Problem: What can a bad process do?
- Go into an infinite loop and hold the CPU forever
- Access/change another process’ memory and files

Idea: Multitasking
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       Run more than one

        process at a time

When one process blocks (waiting for disk, network, user) run another

Problem: What can a bad process do?
- Go into an infinite loop and hold the CPU forever
- Access/change another process’ memory

Solution: Protection 
- Preemption – reclaim the CPU from a running process
- Access Control – control who can access which memory region

Idea: Multitasking
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Hardware support in the CPU
- applications run in unprivileged “user” CPU mode
- OS runs in privileged “kernel” CPU mode
- only privileged mode can make protection-related changes

Preemption
- forcefully reclaim resources from a bad-behaving process

Protection: Isolating bad programs



Kernel sets timer interrupt to vector back to the kernel
- Regains control whenever interval timer fires
- Gives CPU to another process if someone else needs it
- Note: must be in supervisor mode to set interrupt entry points
- No way for user code to hijack interrupt handler

Kernel programs timer to fire every 10msec
- must be in supervisor mode to write the appropriate timer registers
- user code cannot reprogram the timer

Result: Cannot monopolize the CPU with an infinite loop
- Worst case get 1/N of the CPU time with N CPU-hungry processes

Example: CPU Preemption



Code Example: CPU Preemption



How can you monopolize the CPU?

Protection is not enough



How can you monopolize the CPU?

Use multiple processes

For many years you could grind the OS to a halt with:
- int main() { while(1) fork(); }
- Keeps creating more processes until you overload the system

Solution:
- Limit number of processes per user
- Enforce CPU quota per user rather than per process
- Kick out misbehaving users and applications

Protection is not enough

Code Example



How can you monopolize the CPU?

Use multiple processes

For many years you could grind the OS to a halt with:
- int main() { while(1) fork(); }
- Keeps creating more processes until you overload the system

Protection is not enough

Code Example



Hardware support in the CPU
- applications run in unprivileged “user” CPU mode
- OS runs in privileged “kernel” CPU mode
- only privileged mode can make protection-related changes

Preemption
- forcefully reclaim resources from a bad-behaving process

Interposition
- place OS between application and “important stuff”
- track everything a process is allowed to use
- for every access, check if legal

Protection: Isolating bad programs



Applications run as processes in unprivileged user-level mode

The OS runs in kernel/privileged mode:
- Manages processes
- Interposes between processes and the hardware

Typical OS Structure
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How do applications 
“talk” with the kernel?



Applications invoke the kernel through system calls:

- Special hardware instruction gives control to the kernel, calling one 

of hundreds system call handlers (functions)

How to interpose: System Calls
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Goal: Ask the kernel to do “stuff” that cannot be done in user mode

The kernel provides a well-defined system call interface:
- Applications store arguments in specific registers and trap in the kernel
- Kernel performs the operation and returns the result

System calls are a low-level interface/API
- Libraries/languages build higher-level abstractions, e.g., read() vs. scanf()

Example: POSIX/UNIX interface:
- read(),write(),open(),close(),fork()

System Calls



Application open files (or devices) by name:
- Ι/Ο happens through the open files

int open(char *path, int flags, /*int mode*/...);
- flags: O_RDONLY, O_WRONLY, O_RDWR
- O_CREAT: create the file if non-existent
- O_EXCL: (w. O_CREAT) create if the file exists already
- O_TRUNC: truncate the file
- O_APPEND: start writing from the end of the file
- mode: final argument with O_CREAT

Returns file descriptor used for all file I/O

Example: File I/O System Calls (1/2)

What if something goes 
wrong?



What if open fails? Returns -1 (invalid fd)

Most system calls return -1 on failure
- more information about the error stored in the global errno variable
- is this a good design choice?

 #include <sys/errno.h> for possible values
- 2=ENOENT “no such file or directory”
- 13=EACCESS “permission denied”

 perror() prints a human readable message based on the errno
- perror(“initfile”); 

→ “initfile: No such file or directory”

Error Returns



int read(int fd, void *buf, int nbytes);
- Returns number of bytes read
- Returns 0 bytes at end of file, or -1 on error

int write(int fd, const void *buf, int nbytes);
- Returns number of bytes written, -1 on error

off_t lseek(int fd, off_t pos, int whence);
- whence: 0-start, 1-current, 2-end
- Returns previous file

int close(int fd);

Example: File I/O System Calls (2/2)



- File descriptors are inherented by the child processes
- When one process spawns another, same fds by default

- Descriptors 0, 1, 2 have a special meaning
- “0”: standard input (stdin)
- “1”: standard output (stdout)
- “2”: standard error (stderr)

int close(int fd);

File descriptors



- Print the contents of a file

- Can see system calls using strace

Code Example: Print a file



What are other possible OS structures?
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What are other possible OS structures?
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app user

kernel
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system
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kernel

system call via
message passing

MONOLITHIC

MICROKERNEL

(+) Modular design
(-) Performance 



How can we protect the memory of one process from another?

What about memory?
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Key idea: If you can’t name it, you can’t touch it

Definitions:
- Address space: all memory locations a program can name (linear)
- Virtual address: address in process’ address space
- Physical address: address in physical memory
- Translation: map physical to virtual address

Translation done on every load, store, and instruction fetch
- Done in hardware in modern CPUs for speed

The OS sets up the mapping and ensures one process’ translation do not 
include another process’ memory

Solution: Memory Virtualization 



Kernel-only virtual addresses
- The kernel memory is part of all address spaces
- Apps cannot touch kernel memory

Read-only virtual addresses are useful
- Sharing of code pages between applications, e.g., libraries
- Inter-process communication, memory-mapped files, …

Execute-disabled VA
- Makes code injection attacks harder

Memory Virtualization Advanced Features



Code Example: Memory Virtualization



Putting it all together: System Contexts

1. User-level – CPU in user mode running an application
2. Kernel process context – Running kernel code on behalf of an application

- system call, exception handling (page fault, numeric exception, etc.)
3. Kernel code not associated with a process: 

- timer interrupt
- device interrupt
- “softirq”, “tasklet” (Linux-specific)

4. Context switch code – Change which process is running
- Requires changing the current address space

5. Idle – Do (almost) nothing



Policies: Resource Allocation
Multitasking enabled higher resource utilization

Example:
- Process downloads a big file over the internet, e.g., a movie
- You play a game while downloading the file
- CPU utilization higher than if just downloading

Is multitasking always better?



Resource Allocation and Performance
Multitasking enabled higher resource utilization

Example:
- Process downloads a big file over the internet, e.g., a movie
- You play a game while downloading the file
- CPU utilization higher than if just downloading

Is multitasking always better? Depends on the cost of switching

Example: Disk much much slower than memory
- 1 GiB memory in the machine
- 2 processes run, needing 1 GiB each
- When switching between processes need to load and store data to/from disk
- Faster to run one at a time rather than context switching

Conclusion: Scheduling is a hard problem



A Little Bit of History
Predecessor of UNIX

Multics ("MULTiplexed Information and Computing Service")

- Developed in MIT, targeting timesharing computers
- Supported modularity (i.e., plugging, unplugging components) and (some) 

security (virtual memory)

GE 645 running at 
MIT in 1967



The arrival of UNIX
Developed in Bell Labs in 1969-1971

Initially written in assembly but rewritten in C in 1973

Unix philosophy:
- provide a set of simple tools, each of which performs a limited, well-defined 

function
- simple API, e.g., everything is a file

Why was it successful? PDP-11



The arrival of UNIX
Developed in Bell Labs in 1969-1971

Initially written in assembly but rewritten in C in 1973

Unix philosophy:
- provide a set of simple tools, each of which performs a limited, well-defined 

function
- simple API, e.g., everything is a file

Why was it successful?
1. Open source software – everyone can use it
2. Written in C – portable

PDP-11



The evolution of UNIX → Linux
1977 - Berkeley Software Distributions or BSD

- macOS is based on its descendants

1980-90s – UNIX wars
- Different companies (ATT, DEC, Sun, IBM) commercialize UNIX
- Led to closed-source implementations of UNIX

1991 – First version of Linux released
- Fully open-source
- Enforces the descendants to be open-source (“GPL” license)


