UNIX File Systems &
Journaling
W4118 Operating Systems I

https://cs4118.qgithub.io/www/2024-1/

Credits to Jae and David Mazieres

https://cs4118.github.io/www/2024-1/

Original Unix FS

Simple and elegant

1 inodes data blocks (512 bytes)

supler'block disk

Components

e Data blocks

e Inodes

e Superblock (specifies number of blks in FS, counts of max # of files, pointer
to head of free list)

Problem: Slow

Performance Costs

Blocks too small (512 bytes)

e File index too large
e Too many layers of mapping indirection
e Transfer rate low

Poor clustering of related objects

Consecutive blocks not close together
Inodes far from data blocks
Inodes for file in the same directory are not close together

", “grep foo *.c”

o
o
o
e Poor enumeration performance: e.g., “Is -I”,

More Modern UNIX File System Architecture

Multi-level indexed block allocation

e I(ndex)node is the internal representation of a file, holds data block pointers

and other metadata
e Used by FFS, ext2, ext3

Design filesystem with disk geometry in mind

e Cylinder groups: same concentric track across platters

e Since modern devices don’t expose geometry, could also use block
groups: contiguous regions of the logical block address space.

e Keep related data within the same group to minimize seeks!

Berkeley Fast File System (FFS) Layout

Disk drive can be partitioned into multiple operating systems

e e.g., dual-boot Linux and Windows

Within a single OS, can also partition disk into several filesystems

e use different filesystems for different purposes

e in UNIX, all mounted filesystems are grafted into the directory hierarchy

tree

disk drive |

partition

partition

partition

Berkeley Fast File System (FFS) Layout

A file system occupies a disk

partition. At the top-level of FFS we
have:

disk drive ; partition partition partition

e super block
o metadata about the filesystem

. file system slinder group 0 cylinder group 1 cylinder group n
(#blocks, #groups, block size, etc.) = | ‘ 1 il ‘ e
. boot block(s) boot block(s) -= e -
o for OS partition, place boot loader e TR o Trnode[ook | o | s |
at a known place (e.g. at the very Lcopy | 180 | map [Plimep

start of the partition) for the -
hardware to locate and execute) — -

e cylinder group partitions
o place inodes and data blocks into

the same cylinder group to
minimize disk seeks

Clustering Related Objects

e Tries to put sequential blocks in adjacent sectors

o Access one block, probably access next H

file a file b

e Tries to keep inode in same cylinder group as file data
o If you look at inode, most likely will look at data too.

e Tries to keep all inodes a dir in same cylinder group
o Access one name, frequently access many, e.g., “Is -I’

Berkeley Fast File System (FFS) Layout

A cylinder group maintains a copy of the
superblock and some cylinder group metadata
for performance. The crucial parts of the file

system are:

disk drive partition partition partition

e inode bitmap

o which inodes are used/unused
e block bitmap

o which data blocks are

file system

‘ cylinder group 0 cylinder group 1 ‘e ‘ cylinder group n

usedlunused boot block(s) - ‘ 1
e array of inode blocks super block =— 7o |
o stores per-file inodes block | & |Fede Bloek | inodes data blocks

o note that an inode uniquely Leopy | | 1
identifies a file, NOT the filename
— more on this later
o #inodes is effectively the #files s e s
you can have on the filesystem
o sizeof(inode) ~ 128B,
sizeof(datablock) ~ 4KB, should
be able to fit quite a few
e array of data blocks

Finding space for related objects

Old Unix: Linked list of free blocks

e Just take a block off of the head. Easy!
e Bad: free list gets jumbled over time. Finding adjacent blocks hard and

slow

FFS: switch to bit-map of free blocks

1010101111111000001111111000101100

Easier to find contiguous blocks

Small, so usually keep the entire thing in memory
Time to find free block increases if fewer free blocks

Using the bitmap

Usually keep entire bitmap in memory
e 4G disk /4K blocks. How big is the map?
Allocate block close to block x

e |[f the disk is almost empty, will likely find one near
e As disk becomes full, search become more expensive and less effective

Keep a reserve (e.g., 10%) of disk always free, scattered across the disk

e Don'ttell users
e Only root can allocate blocks once FS 100% full
e With 10% free, can almost always find a nearby free block

Inodes and Data Blocks

A given inode in the inode array
represents a single file

Directories are pretty much just
“special” files — they also occupy data
blocks. A directory’s data block houses
directory entries:

e one dentry per file in the directory

e each dentry has the name of the
file and the inode

e notice that two different dentries
can refer to the same inode — files
are uniquely identified by inode
number in a filesystem, not the
filename!

-

]

- directory blocks and data blocks
Srcas data data directory data firectory
e 2t block block block block block
NI S 4 , ;
S N~ / i /
iy /4 a@\z‘\g"/ \)\OC\‘ A
@ N> tablock L — \
SV et
&/ £ $ = \
0]//// B / \
A / \
i-nodelfi-node i-node i-node I:l
i-node .
\\ \\ e “| number filename ‘
\ T
e

filename

Inodes and Data Blocks Example

- directory blocks and data blocks -

i-node array

mkdir testdir 2549

Summary

Symbolic link

e Special file, designated by a bit in metadata
e File data is name to another file

Hard link

Multiple dentries point to the same file

All hard links are equal: no primary

Store link count in file metadata

Cannot refer to directories or files outside fs

What about consistency?

Writes require several steps:

e Update inode/block bitmaps
e Update inode
e Update data blocks

What if the system crashes?

disk drive par!

tition

file system

boot block(s) - ‘

super block -

cylinder group 0

cylinder group 1

‘e] cylinder group n ‘

super 7
bl(F:k 66 |tmedle] Block nodes data blocks
info | map |bitmap ; i
copy
-node | i-node -node

Example: ext2 empty foo file creation

Let's analyze possible crash
scenarios. Define B, |, D as follows: sllocate inode

for foo/] 1
e inode bitmap update (B) o191@ -~ i foo 3
e add inode for foo (I) o i
e add dentry for foo to dir data
: Omeerase
block (D) ;
Assume that writes within a block Memory §
happen atomicall Disk H
PP y ™ [e1000 [01000 /
inode block inode data blocks
bitmap bitmap array
B =01000 -—> B' = 01010
I = garbage ——> I' = initialized

D=d:; s} —> D' =4., <=, foo}

Crashes can lead to inconsistencies

B I D -—-—> Consistent (new data lost)

B'" I D --—> Inconsistency! Bitmap says I was allocated,
but no one is using it (leak)

B I' D —-—> As if nothing happened! we wrote to the inode
but map still says its garbage

B I D' -——> SERIOUS PROBLEMS: dentry exists, but points to garbage inode.
bitmap says that inode is free, can be taken by another file.

B' I' D -—-—> Inconsistency! Bitmap says I was allocated, and we wrote to I,
but no one uses I.

B' I D' -——> MOST SERIOUS PROBLEM! FS is consistent according to bitmap and
dentry, but inode has garbage data.

B I' D' -——> Inconsistency! Dentry refers to valid I, but bitmap says I is free.
I can be taken by another file.

B' I' D' ———> Consistent (new data persisted)

fsck: file system consistency check

In the old days, reboot after crash and scan entire disk to make fs consistent

Disadvantages:

e slow to scan large disk
e cannot correctly fix all crash scenarios, e.g.,B' I D'
e no well-defined consistency, e.g., whatdowe doforB I D'?

Solution: Journaling

Keep a write-ahead log

Persistently write intent to log/journal, then update filesystem

e crash before intent is committed: noop
e crash after intent is committed: replay op

Better than fsck:

e no need to scan entire disk
e well-defined consistency

Example: ext3 physical journaling

e Commit dirty blocks to journal
as one transaction

e Write commit record (finalize
journal entry)

e Write dirty blocks to real file
system

e Reclaim journal space for
transaction (we don’t need it
anymore)

allocate inode fo folo for foo 1
01010 1] D L
foo 3
lookup up
dir data block]
: 3. Write dirty
blocks to disk
Memory
Disk
01010 | 61000 /| |1 D
2. Commit
Journal D e;ﬁat

-------------------- > Jtail

Journaling Write Orders

1. Journal writes, then FS writes
e otherwise, crash will leave FS inconsistent but no journal record to
patch it up
2. FS writes, then reclaim journal space
e otherwise, if you crash before you finish the FS write, the journal
record to patch it up will already be gone!
3. Journal writes, then commit record, then FS writes
e we need the commit record to tell us that we journaled the entirety
of the change. Otherwise, the journal may have garbage in it!

ext3 Journaling Modes

Motivation: journaling is expensive. Every FS write requires two disk writes,
two seeks. Balance consistency and performance...

Data journaling: journal all writes, including file data
e Problem: expensive to journal data
Metadata journaling: journal only metadata

e Used by most FS (IBM JFS, SGI XFS, NTFS)
e Problem: file may contain garbage data

Ordered mode: write file data to FS first, then journal metadata

e Default mode for ext3
e Problem: if crash before writing metadata, then you end up with old file
metadata and new file data, where the journal says everything is OK

