
UNIX File Systems & 
Journaling

W4118 Operating Systems I

https://cs4118.github.io/www/2024-1/

Credits to Jae and David Mazières

https://cs4118.github.io/www/2024-1/


Original Unix FS
Simple and elegant

Components
● Data blocks
● Inodes
● Superblock (specifies number of blks in FS, counts of max # of files, pointer 

to head of free list)
Problem: Slow



Performance Costs

Blocks too small (512 bytes)

● File index too large
● Too many layers of mapping indirection
● Transfer rate low

Poor clustering of related objects

● Consecutive blocks not close together
● Inodes far from data blocks
● Inodes for file in the same directory are not close together
● Poor enumeration performance: e.g., “ls -l”, “grep foo *.c”



More Modern UNIX File System Architecture

Multi-level indexed block allocation

● I(ndex)node is the internal representation of a file, holds data block pointers 
and other metadata

● Used by FFS, ext2, ext3

Design filesystem with disk geometry in mind

● Cylinder groups: same concentric track across platters
● Since modern devices don’t expose geometry, could also use block 

groups: contiguous regions of the logical block address space.
● Keep related data within the same group to minimize seeks!



Berkeley Fast File System (FFS) Layout

Disk drive can be partitioned into multiple operating systems

● e.g., dual-boot Linux and Windows

Within a single OS, can also partition disk into several filesystems

● use different filesystems for different purposes
● in UNIX, all mounted filesystems are grafted into the directory hierarchy 

tree



Berkeley Fast File System (FFS) Layout
A file system occupies a disk 
partition. At the top-level of FFS we 
have:
● super block

○ metadata about the filesystem 
(#blocks, #groups, block size, etc.)

● boot block(s)
○ for OS partition, place boot loader 

at a known place (e.g. at the very 
start of the partition) for the 
hardware to locate and execute

● cylinder group partitions
○ place inodes and data blocks into 

the same cylinder group to 
minimize disk seeks



Clustering Related Objects

● Tries to put sequential blocks in adjacent sectors 
○ Access one block, probably access next

● Tries to keep inode in same cylinder group as file data
○ If you look at inode, most likely will look at data too.

● Tries to keep all inodes a dir in same cylinder group
○ Access one name, frequently access many, e.g., “ls -l”



Berkeley Fast File System (FFS) Layout
A cylinder group maintains a copy of the 
superblock and some cylinder group metadata 
for performance. The crucial parts of the file 
system are:

● inode bitmap
○ which inodes are used/unused

● block bitmap
○ which data blocks are 

used/unused
● array of inode blocks

○ stores per-file inodes
○ note that an inode uniquely 

identifies a file, NOT the filename 
– more on this later

○ #inodes is effectively the #files 
you can have on the filesystem

○ sizeof(inode) ~ 128B, 
sizeof(datablock) ~ 4KB, should 
be able to fit quite a few

● array of data blocks



Finding space for related objects

Old Unix: Linked list of free blocks

● Just take a block off of the head. Easy!
● Bad: free list gets jumbled over time. Finding adjacent blocks hard and 

slow

FFS: switch to bit-map of free blocks

● 1010101111111000001111111000101100
● Easier to find contiguous blocks
● Small, so usually keep the entire thing in memory
● Time to find free block increases if fewer free blocks



Using the bitmap

Usually keep entire bitmap in memory

● 4G disk / 4K blocks. How big is the map?

Allocate block close to block x

● If the disk is almost empty, will likely find one near
● As disk becomes full, search become more expensive and less effective

Keep a reserve (e.g., 10%) of disk always free, scattered across the disk

● Don’t tell users
● Only root can allocate blocks once FS 100% full
● With 10% free, can almost always find a nearby free block



Inodes and Data Blocks
A given inode in the inode array 
represents a single file

Directories are pretty much just 
“special” files – they also occupy data 
blocks. A directory’s data block houses 
directory entries:
● one dentry per file in the directory
● each dentry has the name of the 

file and the inode
● notice that two different dentries 

can refer to the same inode – files 
are uniquely identified by inode 
number in a filesystem, not the 
filename!



Inodes and Data Blocks Example

mkdir testdir



Summary

Symbolic link

● Special file, designated by a bit in metadata
● File data is name to another file

Hard link

● Multiple dentries point to the same file
● All hard links are equal: no primary
● Store link count in file metadata
● Cannot refer to directories or files outside fs



What about consistency?

Writes require several steps:

● Update inode/block bitmaps
● Update inode
● Update data blocks

What if the system crashes?



Example: ext2 empty foo file creation
Let’s analyze possible crash 
scenarios. Define B, I, D as follows:
● inode bitmap update (B)
● add inode for foo (I)
● add dentry for foo to dir data 

block (D)
Assume that writes within a block 
happen atomically



Crashes can lead to inconsistencies



fsck: file system consistency check

In the old days, reboot after crash and scan entire disk to make fs consistent

Disadvantages:

● slow to scan large disk
● cannot correctly fix all crash scenarios, e.g., B' I D'
● no well-defined consistency, e.g., what do we do for B I D'?



Solution: Journaling

Keep a write-ahead log

Persistently write intent to log/journal, then update filesystem

● crash before intent is committed: noop
● crash after intent is committed: replay op

Better than fsck:

● no need to scan entire disk
● well-defined consistency



Example: ext3 physical journaling

● Commit dirty blocks to journal 
as one transaction

● Write commit record (finalize 
journal entry)

● Write dirty blocks to real file 
system

● Reclaim journal space for 
transaction (we don’t need it 
anymore)



Journaling Write Orders

1. Journal writes, then FS writes
● otherwise, crash will leave FS inconsistent but no journal record to 

patch it up
2. FS writes, then reclaim journal space

● otherwise, if you crash before you finish the FS write, the journal 
record to patch it up will already be gone!

3. Journal writes, then commit record, then FS writes
● we need the commit record to tell us that we journaled the entirety 

of the change. Otherwise, the journal may have garbage in it!



ext3 Journaling Modes
Motivation: journaling is expensive. Every FS write requires two disk writes, 
two seeks. Balance consistency and performance…

Data journaling: journal all writes, including file data
● Problem: expensive to journal data

Metadata journaling: journal only metadata
● Used by most FS (IBM JFS, SGI XFS, NTFS)
● Problem: file may contain garbage data

Ordered mode: write file data to FS first, then journal metadata
● Default mode for ext3
● Problem: if crash before writing metadata, then you end up with old file 

metadata and new file data, where the journal says everything is OK


