
Virtual File System
W4118 Operating Systems I

https://cs4118.github.io/www/2024-1/

Credits to Jae and Hans

https://cs4118.github.io/www/2024-1/

Virtual File System (VFS)

Many file systems and device
types can coexist on the same
system.

Different levels of the stack
have different interfaces:

● File System Interface
● VFS Interface
● Storage Level

Virtual File System (VFS)

File System Interface:

● API for userspace programs to
interact with files

● open(), close(), read(), etc.
● Uses file descriptor to refer to

a file
● Does not expose

implementation details to the
users

Virtual File System (VFS)

Storage Level:

● Determines how data are
stored in the disk

● Userspace programs are not
burdened with these details

● Can even store data remotely,
over the network

Virtual File System (VFS)

VFS Interface:

● Abstraction layer that can
support multiple file systems

● Specifies an interface (similar
to struct sched_class)
that a given FS implements to
hook into the kernel

● VFS dispatches operations to
a specific FS using the
interface, e.g..,
dir->inode_op->mkdir()

VFS Data Structures

struct file: Represents an instance of an open file

● Pointed to by per-process fdtable entry, allows for open file sharing by
copying the pointer

● Stores flags, current position, etc.
● Refers to dentry via struct path f_path (which refers to the inode)

VFS interface: struct file_operations *f_op

● read, write, seek, etc.

VFS Data Structures
struct dentry: Basically a “hard link”: contains name of link and inode number
Break up an absolute path into dentries, one per component, e.g.,
/home/kkaffes/foo has /, home , kkaffes, foo
Path resolution is expensive to open /home/kkaffes/foo you need to:
● consult the dentry for / to find the root inode
● find the root data block, iterate through it to find dentry for home
● consult the dentry for home to find the inode
● find the corresponding data block, iterate through it to find dentry for kkaffes
● consult the dentry kkaffes to find the inode
● find the corresponding data block, iterate through to find the dentry for foo
● consult the dentry foo to find the inode
● find the corresponding data block, and finally read the file contents!

VFS interface: const struct dentry_operations *d_op
● manage dentries through dentry cache (create/remove/hash/etc), more on this later

VFS Data Structures

struct inode: Unique descriptor of a file or directory

i_ino: inode # unique per mounted file system

Can refer to fs-specific data via i_private (will be used for HW8)

VFS interface: const struct inode_operations *i_op

● read, write, seek, etc.

VFS Data Structures

struct super_block: Descriptor of a mounted filesystem.

VFS interface: const struct super_operations *s_op

● inode management, journaling, syncing metadata

Dentry Cache
Linux kernel makes path resolution efficient by employing a dentry cache (dcache)

1. Mount an instance of ext2
at /home

s_root field of super_block
refers to the root dentry of the
mount

Dentry Cache
Linux kernel makes path resolution efficient by employing a dentry cache (dcache)

2. P1 opens
/home/hans/foo for reading

Need to read several
inodes/dentries from disk

Along the way, cache them in
the dcache

Dentry Cache
Linux kernel makes path resolution efficient by employing a dentry cache (dcache)

3. P3 opens /home/hans/bar

Different file than P1 and P2

/home/hans/ path resolution
cached in dcache

Need to read in hans/ directory
data block to find dentry for bar

…only to find it refers to the same
inode as foo

bar and foo are hard links to the
same inode!

