
Wrap Up
W4118 Operating Systems I

https://cs4118.github.io/www/2024-1/

Credits to Jae and Hans

https://cs4118.github.io/www/2024-1/

Advanced UNIX Programming

Processes, threads, concurrency, signals

networking, non-blocking & async I/O

hw3-multi-server:

add complex functionality to a provided basic web server

Crossing to the Kernel: System Calls
Sometimes a process needs to perform privileged operations, e.g.:

- File I/O: open(), read(), write(), close(), etc.
- Memory management: Allocate/free memory, protection
- Process management: fork(), exec(), etc.

Can’t trust (nor expect) userspace processes to do bookkeeping & access
control.
OS needs to provide a well-defined interface to the kernel!
hw4-tabletop:

add a new system call to Linux and install custom kernel to test it
 inspect a running process’s file descriptor table

Synchronization

Many threads of execution can concurrently access shared memory.

Race conditions can lead to data corruption and unpredictable behavior.

Need OS support to provide mutual exclusion and synchronization!

hw5-fridge:

implement an in-kernel hashtable accessible via system calls

 use synchronization primitives to ensure safe data structure access

Scheduling
System may have many processes to execute, but fixed # of CPUs…

OS needs to virtualize the CPU! (i.e. provide illusion of infinite CPUs):
- multiplex process execution across multiple CPUs
- permit higher priority processes to run sooner/for longer

hw6-freezer:

 add a new scheduling policy to the Linux scheduler
 replace the default Linux scheduling policy

Memory Management
Processes execute within a byte-addressable linear virtual address space
 Perks: pointers, arrays, stack grows “downwards”, heap grows “upwards”
How is this possible given fixed RAM size and variable # of running processes?

OS needs to virtualize physical memory (i.e. provide illusion of linear vaddr
spaces)

- map virtual addresses to physical addresses on-the-fly
- protect virtual memory mappings from other processes and illegal access

hw7-farfetchd:

 “hack” a process’s address space by writing directly to its physical memory

File Systems
File access is made straightforward by the file API (syscalls), but there are many
implementation details hidden behind the kernel:

- read/write/execute permission enforcement, user access validation
- resolving path names and fetching corresponding data at offset from disk
- persisting metadata and data on disk, keeping metadata synchronized

The OS needs to implement the file API and ensure data persistence

hw8-ezfs:

 implement a simple file system and hook it into Linux VFS

Stuff we skimmed/missed

Deadlock theory

I/O systems

Network file system (NFS)

Interrupt handlers and bottom half

Kernel synchronization using RCU

Kernel memory management & block I/O layer

Virtualization

Networking

Final

2-hour long - 50% longer than the midterm

Double-sided cheat sheet

Will focus more on the second part of the course:

- Scheduling - HW6
- Memory Management - HW7
- File System

However, you will need concepts from throughout the course, e.g., locks

Final Reminders

Fill out Courseworks evaluation (!!!)

Remember your pledge

- Don’t share class materials with friends

- Don’t post any class-related code to GitHub

- Don’t post any class materials to Chegg, CourseHero, etc

If you enjoyed OS, consider taking COMS E6998

Topics in Cloud Computing next fall

