
eBPF Tutorial
Author: Yannis Zarkadas

Made for EECS6891 - Columbia University Spring 2024

Lecture Goals

- Mental framework for eBPF
- What is it fundamentally?
- When does it run?
- How do I get data in / out?
- Practical examples with code for observability, networking, security.

What is eBPF?

- eBPF is a secure sandbox (executes arbitrary code) in the kernel!

eBPF SandboxC program
BPF Assembly

(Virtual ISA)

Compile Load

Userspace Kernel

Verify, JIT
and Run

How is eBPF secure?

- Secure == it doesn’t crash and bring down the kernel.
- Method: Verification. Run all possible code paths and verify no crashes.
- General principles when writing code:

- Bounded loops.
- Check for NULLs.
- Check buffer bounds.

See more at:

https://www.kernel.org/doc/html/v6.1/bpf/verifier.html

https://www.kernel.org/doc/html/v6.1/bpf/verifier.html

When does it run?

Points where eBPF runs == BPF Hooks:

- Tracepoints
- Kprobes
- Networking hooks for inspecting / redirecting packets
- Security hooks for auditing / allowing access to files
- …

eBPF Sandbox

BPF
Hook

Kernel
code runs

Kernel code
continues

Example 1: Hello world

BPF Hook:

- Tracepoint syscalls/sys_enter

What are tracepoints?

- A tracepoint placed in code provides a hook to call
a function (probe) that you can provide at runtime.
Linux sprinkles them in interesting spots (e.g.,
syscalls, io start/end, …)

- Very stable interface to build on!
- Full list on your machine:

ls /sys/kernel/debug/tracing/events/

eBPF Sandbox

BPF
Hook

Kernel
code runs

Kernel code
continues

Example 1: Hello world

BPF helpers

First way of
output!

Boilerplate

Example 1: Hello world

Let’s compile it to BPF bytecode!

What does it look like?

Example 1: Hello world

This is BPF
bytecode!

Assembly for a
CPU that does not
exist!

Example 1: Hello world

Let’s load it in the kernel!
Simplified loader
program:

1. Load
2. Attach

Example 1: Hello world

Let’s see the code the kernel
JIT compiler generates for
that program!

This is ARM64
assembly!

Example 1: Hello world

Let’s view the output of bpf_printk!

It goes to the system tracing buffer.

Example 1: Hello world

Conclusion:

- See the essence of eBPF in action: code -> BPF bytecode -> assembly
- Learn to write / compile / attach a simple eBPF program.
- Learn to output and read logs with bpf_printk.

eBPF Maps - Maintaining state

- The simple hello world example is not very useful.
- Most useful programs need STATE.
- BPF Maps are how BPF programs maintain state and get data in/out to

userspace!
- Maps persist and are not tied to eBPF program execution lifetime.
- Many types of maps:

- Array
- Hash (key-value store)
- Global and per-cpu variants

BPF Map

eBPF Maps - Global and Per-CPU variants

BPF MapBPF Map

CPU 1 CPU 2 CPU N… CPU 1 CPU 2 CPU N…

BPF Map BPF Map…

BPF Helpers

Useful utilities to interact with the system. For example:

- What CPU am I running on?
- In what PID’s context is the eBPF program running right now?

- We saw bpf_get_current_pid_tgid before!
- Get / set map key-values.
- …

BPF helpers are to eBPF what system calls are to userspace programs.

An interface to more privileged actions.

Example 2: syscount

Let’s extend hello world to do something more
useful:

- Count how many times each syscall was
used system-wide.

- I.e. construct a key-value map of syscall-id
to count.

Introducing:

- BPF_MAP_TYPE_HASH
- See all here:

https://docs.kernel.org/bpf/maps.html
BPF Map (Hash)

Key(sysid) Value(count)

63 (read) 645

64 (write) 432

https://docs.kernel.org/bpf/maps.html

Example 2: syscount

eBPF Program
syscount.bpf.c

BPF
Hook

1. Kernel
code runs

Kernel code
continues

BPF Map (Hash)

Key(sysid) Value(count)

63 (read) 645

64 (write) 432

 writeUserspace Process
syscount.c

read

Example 2: syscount - BPF part

Let’s define the map in eBPF! Why do we use a per-cpu map?

Map Type
Key Type
Value Type

Example 2: syscount - BPF part

How do we know this?

Example 2: syscount - Userspace part
For each syscall id (key), add the values from all CPUs.

Example 2: syscount

Conclusion:

- Learn how to maintain state with BPF maps.
- Syscall counts persist across invocations!

- Learn how to export state to userspace with BPF maps.

Taking actions with eBPF

- So far we’ve mainly focused on observability use-cases.
- However, many BPF program types can take actions.
- For example:

- Networking: BPF programs can reject / forward a packet
- Security: BPF programs can allow / block a filesystem operation

XDP: BPF for networking

Program type BPF_PROG_TYPE_XDP

Takes action with return code:

- XDP_DROP: Drop the packet.
- XDP_PASS: Continue processing as normal.
- XDP_TX / XDP_REDIRECT: Redirect the package to the same / another NIC.

Example 3: Simple Firewall

- Let’s use XDP to make a simple firewall! It will just block UDP port 11111.
- XDP program see ethernet frames. Need to parse.

Ethernet Header IP Header UDP Header Data

Message Buffer:

Example 3: Simple Firewall - BPF part

Example 3: Simple Firewall - BPF part

Example 3: Simple Firewall - Userspace part

Same as hello_world, just different attach function:

Example 3: Simple Firewall - Demo

Let’s see it running live!

Example 3: Simple Firewall

Conclusions:

- Learn how eBPF can route / drop packets using XDP.
- Implement a simple firewall.
- Food for thought: Think about what we could build by adding maps to our

simple firewall. We can enable userspace to encode a great amount of
complex rules that can change at runtime.

- Facebook uses something similar for their firewall!
- http://vger.kernel.org/lpc_net2018_talks/ebpf-firewall-LPC.pdf

- Why XDP?
- Performance
- Flexibity

BPF in Security - LSM Hooks

Linux Security Modules (LSM)

- Framework for implementing new security models in Linux.
- TLDR: It’s a bunch of hooks in strategic locations (mainly file operations).

- File open
- File permission (read / write)
- File mmap
- …

- See: security/security.c in Linux kernel

BPF in Security - LSM Hooks

Linux Security Modules (LSM)

- Framework for implementing new security models in Linux.
- TLDR: It’s a bunch of hooks in strategic locations (mainly file operations).

- File open
- File permission (read / write)
- File mmap
- …

- See: security/security.c in Linux kernel
- Traditionally implemented with custom Linux Kernel Modules
- But now, we can also attach BPF programs!

Example 4: Simple file access control

Let’s build a simple access control system with eBPF.

- On each file operation, check if a user is possibly compromised.
- If they are, disallow all interactions with the filesystem.

Example 4: Simple file access control - BPF part

Example 4: Simple file access control - BPF part

Example 4: Simple file access control - BPF part

Example 4: Demo

Example 4: Conclusions

- One more use-case where eBPF can actually take decisions on behalf of the
kernel.

- Again, think how this could be combined with a auditing and detection tool.
- Example eBPF security projects:

- Falco
- Tracee

Advanced Topics

Don’t really need to know any of them to do useful things, but you may see them
in online resources and I want you to have an idea of what they are:

- BPF CO-RE (BTF)
- Libbpf - skeleton
- Iterators

Advanced Topics - BPF CO-RE

CORE == Compile Once Run Anywhere

- Aims to solve the problem of portability
- Imagine you had v1 code that accessed: kernel_struct->b
- What would happen if you ran it in v2?

v1 v2

Advanced Topics - BPF CO-RE

Solution: BPF Type Format (BTF)

- See: https://nakryiko.com/posts/bpf-portability-and-co-re/

Basically:

- Record all types for accessed kernel structs in BPF programs (object files),
using the BTF format.

- When loading the BPF program, field accesses are matched based on name
and type.

https://nakryiko.com/posts/bpf-portability-and-co-re/

Advanced Topics - Libbpf Skeleton

- Generated helper code by libbpf: bpftool gen skeleton
- Quality of life improvement for working with BPF programs.
- See:

https://docs.kernel.org/bpf/libbpf/libbpf_overview.html#bpf-object-skeleton-file

Features like:

- Easier interaction with global vars and maps.
- Bytecode embedded in skeleton, no need to load anything.

We didn’t use it for the examples as it was a bit too “magic”. But it is
recommended for stuff that will hit production.

https://docs.kernel.org/bpf/libbpf/libbpf_overview.html#bpf-object-skeleton-file

Advanced Topics - BPF Iterators

- So far, we’ve seen that BPF programs are triggered as part of the kernel
control flow.

- We can also iterate through certain structures of the kernel (e.g., tasks) and
trigger a BPF program for each one.

- These are called BPF iterators.

See: https://docs.kernel.org/bpf/bpf_iterators.html

https://docs.kernel.org/bpf/bpf_iterators.html

