
Unix Signals
W4118 Operating Systems I

https://cs4118.github.io/www/2024-1/

Credits to Jae

https://cs4118.github.io/www/2024-1/

Logistics

● HW3 is out

- Make sure you have Github access (invitations expire
after 7 days)

Process Groups and Job Control
We start a long-running pipeline in a shell:

$ proc1.sh | proc2.sh # we don't get the shell back while this runs

How can we do other work?

Process Groups and Job Control
We start a long-running pipeline in a shell:

$ proc1.sh | proc2.sh # we don't get the shell back while this runs

How can we do other work?

Today: Use a modern terminal and open another tab/window/SSH
connection, use a tmux (terminal multiplexer) session, etc.

Past: Use job control to put pipeline in the background and bring your shell
back to the foreground.

Process Groups and Job Control
$ proc1 | proc2 & # send pipeline to background

[1] 7106

$ proc3 | proc4 | proc5 # we have our shell, start another pipeline

[1] 7106 refers to the job# and leading
pid of the backgrounded pipeline. More
job control:

● jobs: List all jobs
● Ctrl-Z: Suspend foreground job

and send to the background
● bg <job>: Resume <job> in the

background
● fg <job>: Bring backgrounded

<job> into the foreground

Sending Signals
#include <signal.h>

int kill(pid_t pid, int signo);

int raise(int signo);

Terminal-generated signals

● Ctrl-C sends SIGINT to foreground process group
● Ctrl-\ sends SIGQUIT to foreground process group
● Ctrl-Z sends SIGTSTP to foreground process group

● Both return: 0 if OK, -1 on error
● If pid < 0, the signal is sent to the

process group with pgid == | pid |

signal()
typedef void (*sighandler_t)(int);

sighandler_t signal(int signum, sighandler_t handler);

Sets disposition of signum to handler, where handler can be:

● SIG_IGN: ignore the signal
● SIG_DFL: take the default action associated with the signal (see man 7

signal)
● a handler (function) of type sighandler_t: handler(signum) called to

handle signal
Show portability issues between
Mac and Linux for shell2

Unreliable Signals: read()
What happens if a “slow” system call is interrupted by a signal?

● Slow underlying read() syscall gets interrupted. errno set to EINTR,
causes fgets() to return NULL

● Hotfix?

Unreliable Signals: read()
What happens if a “slow” system call is interrupted by a signal?

● Slow underlying read() syscall gets interrupted. errno set to EINTR,
causes fgets() to return NULL

● Hotfix: check EINTR and restart the syscall
○ …but this is annoying, most of the time we want the syscall to be restarted
○ need a way to indicate that slow syscalls should be restarted for us

Unreliable Signals: read()
What happens if a “slow” system call is interrupted by a signal?

● Slow underlying read() syscall gets interrupted. errno set to EINTR,
causes fgets() to return NULL

● Hotfix: check EINTR and restart the syscall
○ …but this is annoying, most of the time we want the syscall to be restarted
○ need a way to indicate that slow syscalls should be restarted for us

Signals get lost

● Disposition set with Linux signal() resets after each signal
● Hotfix?

Unreliable Signals: read()
What happens if a “slow” system call is interrupted by a signal?
● Slow underlying read() syscall gets interrupted. errno set to EINTR,

causes fgets() to return NULL
● Hotfix: check EINTR and restart the syscall

○ …but this is annoying, most of the time we want the syscall to be restarted
○ need a way to indicate that slow syscalls should be restarted for us

Signals get lost

● Disposition set with Linux signal() resets after each signal
● Hotfix: Set disposition again after detecting EINTR

○ …but there’s still a race condition: what if we get another signal before we set
disposition?

○ need a way to indicate NOT to reset disposition

Reentrancy Issues
Can’t call certain function in asynchronous contexts

● Functions that use static data structures, malloc(), free(), standard I/O
functions are unsafe!
○ Why is printf() not async-signal-safe?
○ Hint: recall std-io buffering (see also: man 7 signal-safety).

● Calling such functions in async manner could cause data corruption
● Check man 7 signal-safety for async-signal-safe functions

alarm()/pause()
#include <unistd.h>

unsigned int alarm(unsigned int seconds);

 // Returns: 0 or number of seconds until previously set alarm

int pause(void);
 // Returns: –1 with errno set to EINTR

alarm(): generate SIGALRM after seconds

pause(): suspend program execution indefinitely

Issues: check sleep.c

Portable Solution: sigaction()
See sigaction.c

An installed action stays installed until otherwise changed with sigaction()

sigset_t sa_mask: additional signals to block while signo is being handled with
sa_handler → signo is blocked for you while in sa_handler

int sa_flags: handling options – some notable ones:

● SA_INTERRUPT: Don’t automatically restart slow system call (default, there may not be a
flag)

● SA_RESTART: Automatically restart slow system call
● SA_NODEFER: Don’t block signo while in sa_handler
● SA_RESETHAND: Reset disposition of signo to SIG_DFL

More signal management
sigprocmask(): manipulate a process’s signal mask

sigpending(): retrieve a set of pending signals that are blocked from delivery

sigsuspend(): atomic sigprocmask(SIG_SETMASK, ...) + pause(), restores previous
mask on interrupt

