Run/Wait Queues
W4118 Operating Systems I

https://cs4118.qgithub.io/www/2024-1/

Credits to Jae

https://cs4118.github.io/www/2024-1/

Logistics

e HW3is done
o Please, please, please follow the instructions. We were lenient this time but not for the next
homework.

e Get your VMWare license

e HWA4 probably released today, due 2/21

Process States

/* Used in tsk->state: */

#define TASK RUNNING 0x0000
#define TASK INTERRUPTIBLE 0x0001
#define TASK UNINTERRUPTIBLE 0x0002

TASK RUNNING: the task is runnable — either currently running or on a run queue waiting to run

TASK INTERRUPTIBLE!: the task is sleeping waiting for some condition to exist - can be
awakened prematurely if it receives a signal

TASK UNINTERRUPTIBLE!: the task is sleeping waiting for some condition to exist - cannot be
awakened prematurely if it receives a signal

Run Queue

task structs are linked
via children/sibling
list heads

Per-CPU run_queue links
tasks with state
TASK_RUNNING

Why need a separate
list head for the run
queue?

include/linux/sched.h

task_struct

task_struct

list_ head =

list_head

init_task

run queue

» |list_head -

task_struct

task_struct

- list_head }

E list_head

list_head

list_ head

https://elixir.bootlin.com/linux/v5.10.208/source/include/linux/sched.h#L644

Wait Queue

Per-event wait queue

Wait queue entry is NOT
embedded in task struct

wq_head |

waitqueue

waitqueue

waitqueue

list_head

list_head

list_head

list_head

task

task

task

)i

[

task_struct

task_struct

task_struct

Wait Queue Data Structures

*k%

pseudocode

struct wait_queue_head {
spin_lock_t lock;
struct list_head task_list;
¥

struct waitqueue {
struct task _struct xtask;
wait_queue_func_t func; // callback function, e.g. try_to_wake_up()
struct list_head entry;

How to walit

include/linux/wait.h — (kernel 3.12.74 for simplicity)

1. prepare to wait():add yourself to wait queue, change state to TASK INTERRUPTIBLE
2. signal pending () : check for “spurious wakeup”, i.e. signal interrupted sleep before
condition was met
o break out of loop instead of sleeping
3. schedule (): put yourself to sleep
4. finish wait ():change state to TASK RUNNING, remove yourself from the wait queue

Perform 1-3 in a loop to handle spurious wakeups
Notes:

1. LKD page 59 is outdated and incorrect, use wait event interruptible ()

2. wait event interruptible () is a generic macro, probably not appropriate to use directly
a. Doesn’t account for synchronization
b. You may want to handle signal_pending() differently

https://elixir.bootlin.com/linux/v3.12.74/source/include/linux/wait.h#L275

Scheduling Basics

kernel/sched/core.c

1. pick next task():choose a new task to run from the run queue
2. context switch (): put current task to sleep, start running new task

https://elixir.bootlin.com/linux/v5.10.208/source/kernel/sched/core.c#L4430
https://elixir.bootlin.com/linux/v5.10.208/source/kernel/sched/core.c#L4351
https://elixir.bootlin.com/linux/v5.10.208/source/kernel/sched/core.c#L3749

Wait Queue Walkthrough

Sleeping: Waking up:

1. wait event() 1. Task signals event: wake up ()

2. Enqueued on wait queue 2. Call try to wake up() on each task

3. Remove from run queue 3. Enqueue each task on run queue

4. schedule() 4. Eventually other tasks calls schedule ()
o pick _next task() and previously sleeping task gets chosen*
© context switch 5. Previously sleeping task checks condition

5. Other task runs o Iftrue, finish wake ()

o Else, repeat 3-6 from “sleeping”

Process State Transition

e schedule() P
> pick_next_task() :
context_switch()

/ \

/ TASK_RUNNING | |/ TASK_RUNNING |
|

Proc on Run Queue { |

: Proc is running
but not running | Preemption \ on CPU /

\ on CPU ' (e.g. by timer interrupt) _

Signal received
put proc back into RQ

when it runs, signal handler runs
wait_event()

prepare-to_wait()
// state = TASK_INTERRUPTIBLE

schedule()
wake_up() // remove proc from RQ
try_to_wake_up() \ / TASK_INTERRUPTIBLE \
1 state = TASK.RUNNING ' TASK_UNINTERRUPTIBLE

// put proc back into RQ

Sleeping states

Example: read ()

1.

Trap into kernel
o save registers into per-proc kernel stack
Device driver issues an /O request to the device
Put the calling process to sleep
0 wait_event () — schedule() — pick next task () — context switch()
Another process starts running
The device completes the /O request and raised a hardware interrupt
Trap into kernel and jump to the interrupt handler:
o wake_up(): enqueue blocked tasks back on run queue
o Current task eventually calls schedule () —» pick next task()— context switch ()
Another process starts running
o This process may or may not be the one that called read ()

