
Run/Wait Queues
W4118 Operating Systems I

https://cs4118.github.io/www/2024-1/

Credits to Jae

https://cs4118.github.io/www/2024-1/

Logistics
● HW3 is done

○ Please, please, please follow the instructions. We were lenient this time but not for the next
homework.

● Get your VMWare license

● HW4 probably released today, due 2/21

Process States
/* Used in tsk->state: */

#define TASK_RUNNING 0x0000

#define TASK_INTERRUPTIBLE 0x0001

#define TASK_UNINTERRUPTIBLE 0x0002

TASK_RUNNING: the task is runnable – either currently running or on a run queue waiting to run

TASK_INTERRUPTIBLE: the task is sleeping waiting for some condition to exist - can be
awakened prematurely if it receives a signal

TASK_UNINTERRUPTIBLE: the task is sleeping waiting for some condition to exist - cannot be
awakened prematurely if it receives a signal

Run Queue

task_structs are linked
via children/sibling
list_heads

Per-CPU run_queue links
tasks with state
TASK_RUNNING

Why need a separate
list_head for the run
queue?

include/linux/sched.h

https://elixir.bootlin.com/linux/v5.10.208/source/include/linux/sched.h#L644

Wait Queue

Per-event wait_queue

Wait queue entry is NOT
embedded in task_struct

Wait Queue Data Structures
***pseudocode

include/linux/wait.h – (kernel 3.12.74 for simplicity)

1. prepare_to_wait(): add yourself to wait queue, change state to TASK_INTERRUPTIBLE
2. signal_pending(): check for “spurious wakeup”, i.e. signal interrupted sleep before

condition was met
○ break out of loop instead of sleeping

3. schedule(): put yourself to sleep
4. finish_wait(): change state to TASK_RUNNING, remove yourself from the wait queue

Perform 1-3 in a loop to handle spurious wakeups

Notes:

1. LKD page 59 is outdated and incorrect, use wait_event_interruptible()
2. wait_event_interruptible() is a generic macro, probably not appropriate to use directly

a. Doesn’t account for synchronization
b. You may want to handle signal_pending() differently

How to wait

https://elixir.bootlin.com/linux/v3.12.74/source/include/linux/wait.h#L275

kernel/sched/core.c

1. pick_next_task(): choose a new task to run from the run queue
2. context_switch(): put current task to sleep, start running new task

Scheduling Basics

https://elixir.bootlin.com/linux/v5.10.208/source/kernel/sched/core.c#L4430
https://elixir.bootlin.com/linux/v5.10.208/source/kernel/sched/core.c#L4351
https://elixir.bootlin.com/linux/v5.10.208/source/kernel/sched/core.c#L3749

Sleeping:

1. wait_event()
2. Enqueued on wait queue
3. Remove from run queue
4. schedule()

○ pick_next_task()
○ context_switch

5. Other task runs

Wait Queue Walkthrough
Waking up:

1. Task signals event: wake_up()
2. Call try_to_wake_up() on each task
3. Enqueue each task on run queue
4. Eventually other tasks calls schedule()

and previously sleeping task gets chosen*
5. Previously sleeping task checks condition

○ If true, finish_wake()
○ Else, repeat 3-6 from “sleeping”

Process State Transition

1. Trap into kernel
○ save registers into per-proc kernel stack

2. Device driver issues an I/O request to the device
3. Put the calling process to sleep

○ wait_event()→ schedule()→ pick_next_task()→ context_switch()
4. Another process starts running
5. The device completes the I/O request and raised a hardware interrupt
6. Trap into kernel and jump to the interrupt handler:

○ wake_up(): enqueue blocked tasks back on run queue
○ Current task eventually calls schedule()→ pick_next_task()→ context_switch()

7. Another process starts running
○ This process may or may not be the one that called read()

Example: read()

